
HDL Coder™

User's Guide

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ User's Guide
© COPYRIGHT 2012-2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2012 Online only New for Version 3.0 (R2012a)
September 2012 Online only Revised for Version 3.1 (R2012b)
March 2013 Online only Revised for Version 3.2 (R2013a)
September 2013 Online only Revised for Version 3.3 (R2013b)
March 2014 Online only Revised for Version 3.4 (R2014a)
October 2014 Online only Revised for Version 3.5 (R2014b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

HDL Code Generation from MATLAB

MATLAB Algorithm Design
1

Data Types and Scope . 1-2
Supported Data Types . 1-2
Unsupported Data Types . 1-3
Scope for Variables . 1-3

Operators . 1-4
Arithmetic Operators . 1-4
Relational Operators . 1-4
Logical Operators . 1-5

Control Flow Statements . 1-6
Vector Function Limitations Related to Control

Statements . 1-7

Persistent Variables . 1-8

Persistent Array Variables . 1-10

Complex Data Type Support . 1-11
Declaring Complex Signals . 1-11
Conversion Between Complex and Real Signals 1-12
Support for Vectors of Complex Numbers 1-12

System Objects . 1-14
Why Use System Objects? . 1-14
Predefined System Objects . 1-14
User-Defined System Objects 1-14

iv Contents

Limitations of HDL Code Generation for System
Objects . 1-15

System object Examples for HDL Code Generation . . . 1-16

Predefined System Objects Supported for HDL Code
Generation . 1-17

Load constants from a MAT-File 1-18

Generate Code for User-Defined System Objects 1-19
How To Create A User-Defined System object 1-19
User-Defined System object Example 1-19

Map Matrices to ROM . 1-22

Fixed-Point Bitwise Functions . 1-23
Overview . 1-23
Bitwise Functions Supported for HDL Code Generation 1-23

Fixed-Point Run-Time Library Functions 1-29
Fixed-Point Function Limitations 1-33

Model State with Persistent Variables and System
Objects . 1-34

Bit Shifting and Bit Rotation . 1-38

Bit Slicing and Bit Concatenation 1-41

Guidelines for Efficient HDL Code 1-43

MATLAB Design Requirements for HDL Code
Generation . 1-44

What Is a MATLAB Test Bench? 1-45

MATLAB Test Bench Requirements and Best
Practices . 1-46

MATLAB Test Bench Requirements 1-46
MATLAB Test Bench Best Practices 1-46

v

MATLAB Best Practices and Design Patterns for
HDL Code Generation

2
Model a Counter for HDL Code Generation 2-2

MATLAB Counter . 2-2
MATLAB Code for the Counter 2-3
Best Practices in this Example 2-4

Model a State Machine for HDL Code Generation 2-5
MATLAB State Machines . 2-5
MATLAB Code for the Mealy State Machine 2-5
MATLAB Code for the Moore State Machine 2-7
Best Practices . 2-9

Generate Hardware Instances For Local Functions . . 2-10
MATLAB Local Functions . 2-10
MATLAB Code for mlhdlc_two_counters.m 2-10

Implement RAM Using MATLAB Code 2-13
Implementation of RAM . 2-13
Implement RAM Using a Persistent Array or System

object Properties . 2-13
Implement RAM Using hdl.RAM 2-14

For-Loop Best Practices for HDL Code Generation . . . 2-16
MATLAB Loops . 2-16
Monotonically Increasing Loop Counters 2-16
Persistent Variables in Loops 2-17
Persistent Arrays in Loops . 2-17

Fixed-Point Conversion
3

Floating-Point to Fixed-Point Conversion 3-2

Fixed-Point Type Conversion and Refinement 3-16

Working with Generated Fixed-Point Files 3-26

vi Contents

Specify Type Proposal Options 3-33

Log Data for Histogram . 3-37

Automated Fixed-Point Conversion 3-40
License Requirements . 3-40
Automated Fixed-Point Conversion Capabilities 3-40
Code Coverage . 3-42
Proposing Data Types . 3-45
Locking Proposed Data Types 3-47
Viewing Functions . 3-47
Viewing Variables . 3-48
Histogram . 3-54
Function Replacements . 3-56
Validating Types . 3-57
Testing Numerics . 3-57
Detecting Overflows . 3-57

Custom Plot Functions . 3-59

Visualize Differences Between Floating-Point and Fixed-
Point Results . 3-61

Inspecting Data Using the Simulation Data Inspector 3-67
What Is the Simulation Data Inspector? 3-67
Import Logged Data . 3-67
Export Logged Data . 3-67
Group Signals . 3-67
Run Options . 3-68
Create Report . 3-68
Comparison Options . 3-68
Enabling Plotting Using the Simulation Data Inspector 3-68
Save and Load Simulation Data Inspector Sessions . . . 3-68

Enable Plotting Using the Simulation Data Inspector 3-70
From the UI . 3-70
From the Command Line . 3-70

Replacing Functions Using Lookup Table
Approximations . 3-72

Replace a Custom Function with a Lookup Table 3-73
From the UI . 3-73

vii

From the Command Line . 3-81

Replace the exp Function with a Lookup Table 3-84
From the UI . 3-84
From the Command Line . 3-92

Data Type Issues in Generated Code 3-94
Enable the Highlight Option in a MATLAB Coder

Project . 3-94
Enable the Highlight Option at the Command Line . . . 3-94
Stowaway Doubles . 3-94
Stowaway Singles . 3-94
Expensive Fixed-Point Operations 3-94

Code Generation
4

Create and Set Up Your Project 4-2
Create a New Project . 4-2
Open an Existing Project . 4-4
Add Files to the Project . 4-4

Primary Function Input Specification 4-6
When to Specify Input Properties 4-6
Why You Must Specify Input Properties 4-6
Properties to Specify . 4-6
Rules for Specifying Properties of Primary Inputs 4-8
Methods for Defining Properties of Primary Inputs 4-8

Basic HDL Code Generation with the Workflow
Advisor . 4-10

HDL Code Generation from System Objects 4-14

Generate Instantiable Code for Functions 4-19
How to Generate Instantiable Code for Functions 4-19
Generate Code Inline for Specific Functions 4-19
Limitations for Instantiable Code Generation for

Functions . 4-19

viii Contents

Integrate Custom HDL Code Into MATLAB Design . . . 4-21
Define the hdl.BlackBox System object 4-21
Use System object In MATLAB Design Function 4-23
Generate HDL Code . 4-23
Limitations for hdl.BlackBox . 4-26

Enable MATLAB Function Block Generation 4-27
Requirements for MATLAB Function Block Generation 4-27
Enable MATLAB Function Block Generation 4-27
Results of MATLAB Function Block Generation 4-27

System Design with HDL Code Generation from
MATLAB and Simulink . 4-28

Generate Xilinx System Generator Black Box Block . . 4-32
Requirements for System Generator Black Box Block

Generation . 4-32
Enable System Generator Black Box Block Generation 4-32
Results of System Generator Black Box Block

Generation . 4-33

Generate Xilinx System Generator for DSP Black Box
from MATLAB HDL Design . 4-34

Generate HDL Code from MATLAB Code Using the
Command Line Interface . 4-40

Specify the Clock Enable Rate . 4-45
Why Specify the Clock Enable Rate? 4-45
How to Specify the Clock Enable Rate 4-45

Specify Test Bench Clock Enable Toggle Rate 4-47
When to Specify Test Bench Clock Enable Toggle Rate 4-47
How to Specify Test Bench Clock Enable Toggle Rate . 4-47

Generate an HDL Coding Standard Report from
MATLAB . 4-49

Using the HDL Workflow Advisor 4-49
Using the Command Line . 4-51

Generate an HDL Lint Tool Script 4-53
How To Generate an HDL Lint Tool Script 4-53

ix

Generate a Board-Independent IP Core from MATLAB 4-55
Generate a Board-Independent IP Core 4-55
Requirements and Limitations for IP Core Generation 4-57

Minimize Clock Enables . 4-58
Using the GUI . 4-59
Using the Command Line . 4-59
Limitations . 4-59

Verification
5

Verify Code with HDL Test Bench 5-2

Generate Test Bench With File I/O 5-5
When to Use File I/O In Test Bench 5-5
How Test Bench Generation with File I/O Works 5-5
Test Bench Data Files . 5-5
How to Generate Test Bench with File I/O 5-6
Limitations When Using File I/O In Test Bench 5-6

Deployment
6

Generate Synthesis Scripts . 6-2

Optimization
7

RAM Mapping . 7-2

Map Persistent Arrays and dsp.Delay to RAM 7-3
How To Enable RAM Mapping 7-3

x Contents

RAM Mapping Requirements for Persistent Arrays and
System object Properties . 7-4

RAM Mapping Requirements for dsp.Delay System
Objects . 7-6

RAM Mapping Comparison for MATLAB Code 7-8

Pipelining . 7-9
Port Registers . 7-9
Input and Output Pipeline Registers 7-9
Variable Pipelining . 7-9

Register Inputs and Outputs . 7-10

Insert Input and Output Pipeline Registers 7-11

Distributed Pipelining . 7-12
What is Distributed Pipelining? 7-12
Benefits and Costs of Distributed Pipelining 7-12
Selected Bibliography . 7-12

Pipeline MATLAB Variables . 7-13
Using the HDL Workflow Advisor 7-13
Using the Command Line Interface 7-13
Limitations of MATLAB Variable Pipelining 7-13

Optimize MATLAB Loops . 7-15
Loop Streaming . 7-15
Loop Unrolling . 7-15
How to Optimize MATLAB Loops 7-15
Limitations for MATLAB Loop Optimization 7-16

Constant Multiplier Optimization 7-17

Specify Constant Multiplier Optimization 7-19

Distributed Pipelining for Clock Speed Optimization . 7-20

Map Matrices to Block RAMs to Reduce Area 7-27

Resource Sharing of Multipliers to Reduce Area 7-32

Loop Streaming to Reduce Area 7-41

xi

Constant Multiplier Optimization to Reduce Area . . . 7-47

HDL Workflow Advisor Reference
8

HDL Workflow Advisor . 8-2
Overview . 8-2

MATLAB to HDL Code and Synthesis 8-6
MATLAB to HDL Code Conversion 8-6
Code Generation: Target Tab . 8-6
Code Generation: Coding Style Tab 8-7
Code Generation: Clocks and Ports Tab 8-9
Code Generation: Test Bench Tab 8-11
Code Generation: Optimizations Tab 8-13
Simulation and Verification . 8-15
Synthesis and Analysis . 8-15

HDL Code Generation from Simulink

Model Design for HDL Code Generation
9

Signal and Data Type Support . 9-2
Overview . 9-2
Buses . 9-2
Enumerations . 9-2
Unsupported Signal and Data Types 9-3

Generate Code For Tunable Parameters 9-4
Create and Use a Tunable Parameter 9-4
Generated Code For a Tunable Parameter 9-5
Limitations . 9-5

xii Contents

Code Generation Options in the HDL Coder
Dialog Boxes

10
Set HDL Code Generation Options 10-2

HDL Code Generation Options in the Configuration
Parameters Dialog Box . 10-2

HDL Code Generation Options in the Model Explorer . 10-3
Code Menu . 10-4
HDL Code Options in the Block Context Menu 10-5
The HDL Block Properties Dialog Box 10-6

HDL Code Generation Pane: General 10-8
HDL Code Generation Top-Level Pane Overview 10-9
Generate HDL for . 10-9
Language . 10-10
Folder . 10-10
Generate HDL code . 10-11
Generate validation model . 10-11
Generate traceability report 10-12
Generate resource utilization report 10-13
Generate optimization report 10-14
Generate model Web view . 10-15

HDL Code Generation Pane: Global Settings 10-16
Global Settings Overview . 10-18
Reset type . 10-19
Reset asserted level . 10-19
Clock input port . 10-20
Clock enable input port . 10-21
Reset input port . 10-21
Clock inputs . 10-22
Oversampling factor . 10-23
Clock edge . 10-24
Comment in header . 10-24
Verilog file extension . 10-25
VHDL file extension . 10-25
Entity conflict postfix . 10-26
Package postfix . 10-27
Reserved word postfix . 10-28
Module name prefix . 10-28
Split entity and architecture 10-29

xiii

Split entity file postfix . 10-30
Split arch file postfix . 10-31
Clocked process postfix . 10-31
Enable prefix . 10-32
Pipeline postfix . 10-33
Complex real part postfix . 10-33
Complex imaginary part postfix 10-34
Input data type . 10-34
Output data type . 10-35
Clock enable output port . 10-36
Use trigger signal as clock . 10-37
Balance delays . 10-38
Distributed pipelining priority 10-38
Hierarchical distributed pipelining 10-39
Preserve design delays . 10-40
Clock-rate pipelining . 10-41
Optimize timing controller . 10-41
Minimize clock enables . 10-42
RAM mapping threshold (bits) 10-44
Max oversampling . 10-45
Max computation latency . 10-46
Represent constant values by aggregates 10-47
Use “rising_edge/falling_edge” style for registers 10-48
Loop unrolling . 10-48
Use Verilog `timescale directives 10-49
Inline VHDL configuration . 10-50
Concatenate type safe zeros 10-51
Emit time/date stamp in header 10-52
Scalarize vector ports . 10-53
Minimize intermediate signals 10-54
Include requirements in block comments 10-55
Inline MATLAB Function block code 10-55
Generate parameterized HDL code from masked

subsystem . 10-56
Initialize all RAM blocks . 10-57
RAM Architecture . 10-58
HDL coding standard . 10-58
Do not show passing rules in coding standard report . 10-59
Check for duplicate names . 10-60
Check for HDL keywords in design names 10-61
Check for initial statements that set RAM initial

values . 10-62
Check module, instance, and entity name length 10-63
Check signal, port, and parameter name length 10-64

xiv Contents

Minimize use of variables . 10-65
Check if-else statement chain length 10-66
Check if-else statement nesting depth 10-67
Check multiplier width . 10-68
Check for non-integer constants 10-69
Check line length . 10-70
Highlight feedback loops inhibiting delay balancing and

optimizations . 10-71
Feedback loop highlighting script file name 10-72

HDL Code Generation Pane: Test Bench 10-73
Test Bench Overview . 10-74
HDL test bench . 10-74
Cosimulation blocks . 10-75
Cosimulation model for use with: 10-76
Test bench name postfix . 10-77
Force clock . 10-77
Clock high time (ns) . 10-78
Clock low time (ns) . 10-79
Hold time (ns) . 10-80
Setup time (ns) . 10-80
Force clock enable . 10-81
Clock enable delay (in clock cycles) 10-82
Force reset . 10-83
Reset length (in clock cycles) 10-83
Hold input data between samples 10-85
Initialize test bench inputs . 10-86
Multi-file test bench . 10-86
Test bench reference postfix 10-87
Test bench data file name postfix 10-88
Use file I/O to read/write test bench data 10-89
Ignore output data checking (number of samples) . . . 10-89

HDL Code Generation Pane: EDA Tool Scripts 10-92
EDA Tool Scripts Overview . 10-93
Generate EDA scripts . 10-93
Generate multicycle path information 10-94
Compile file postfix . 10-95
Compile initialization . 10-95
Compile command for VHDL 10-96
Compile command for Verilog 10-97
Compile termination . 10-97
Simulation file postfix . 10-98
Simulation initialization . 10-98

xv

Simulation command . 10-99
Simulation waveform viewing command 10-100
Simulation termination . 10-100
Choose synthesis tool . 10-101
Synthesis file postfix . 10-103
Synthesis initialization . 10-104
Synthesis command . 10-105
Synthesis termination . 10-105
Choose HDL lint tool . 10-106
Lint initialization . 10-107
Lint command . 10-108
Lint termination . 10-108

Supported Blocks Library and Block Properties
11

Generate a Supported Blocks Report 11-2

Generate a Library of Supported Blocks 11-3
View HDL-Specific Block Documentation 11-3

HDL Block Properties . 11-4
Overview . 11-4
BalanceDelays . 11-5
ConstMultiplierOptimization . 11-5
ConstrainedOutputPipeline . 11-7
DistributedPipelining . 11-7
DSPStyle . 11-9
FlattenHierarchy . 11-11
InputPipeline . 11-13
InstantiateFunctions . 11-13
LoopOptimization . 11-14
LUTRegisterResetType . 11-15
MapPersistentVarsToRAM . 11-16
OutputPipeline . 11-18
ResetType . 11-18
SharingFactor . 11-20
SoftReset . 11-20
StreamingFactor . 11-22
UseMatrixTypesInHDL . 11-22

xvi Contents

UseRAM . 11-23
VariablesToPipeline . 11-27

HDL Filter Block Properties . 11-28
AddPipelineRegisters . 11-28
ChannelSharing . 11-28
CoeffMultipliers . 11-29
DALUTPartition . 11-29
DARadix . 11-31
FoldingFactor . 11-32
MultiplierInputPipeline . 11-32
MultiplierOutputPipeline . 11-32
NumMultipliers . 11-33
ReuseAccum . 11-33
SerialPartition . 11-33

Configuring HDL Filter Architectures 11-35
Fully Parallel Architecture . 11-35
Serial Architectures . 11-35

Distributed Arithmetic for HDL Filters 11-37
Requirements and Considerations for Generating

Distributed Arithmetic Code 11-38
Further References . 11-38

Set and View HDL Block Parameters 11-40
Set HDL Block Parameters from the GUI 11-40
Set HDL Block Parameters from the Command Line . 11-40
View All HDL Block Parameters 11-41
View Non-Default HDL Block Parameters 11-41

Set HDL Block Parameters for Multiple Blocks 11-43

View HDL Model Parameters . 11-45

Pass through, No HDL, and Cascade
Implementations . 11-46

Pass-through and No HDL Implementations 11-46
Cascade Implementation Best Practices 11-46

Test Bench Block Restrictions 11-47

Build a ROM Block with Simulink Blocks 11-48

xvii

Generating HDL Code for Multirate Models
12

Code Generation from Multirate Models 12-2
Clock Enable Generation for a Multirate DUT 12-2

Timing Controller for Multirate Models 12-5

Generate Reset for Timing Controller 12-6
Requirements for Timing Controller Reset Port

Generation . 12-6
How To Generate Reset for Timing Controller 12-6
Limitations for Timing Controller Reset Port

Generation . 12-6

Multirate Model Requirements for HDL Code
Generation . 12-7

Configuring Model Parameters 12-7
Sample Rate Requirements . 12-7
Block Configuration and Restrictions For Multirate

DUTs . 12-8

Generate a Global Oversampling Clock 12-10
Why Use a Global Oversampling Clock? 12-10
Requirements for the Oversampling Factor 12-10
Specifying the Oversampling Factor From the GUI . . 12-11
Specifying the Oversampling Factor From the Command

Line . 12-12
Resolving Oversampling Rate Conflicts 12-12

Use Trigger As Clock in Triggered Subsystems 12-16
When To Use Trigger As Clock 12-16
Requirements For Using Trigger As Clock 12-16
How To Specify Trigger As Clock 12-16
Limitations When Using Trigger As Clock 12-17

Generate Multicycle Path Information Files 12-18
Overview . 12-18
Format and Content of a Multicycle Path Information

File . 12-19
File Naming and Location Conventions 12-24

xviii Contents

Generating Multicycle Path Information Files Using the
GUI . 12-24

Generating Multicycle Path Information Files Using the
Command Line . 12-24

Limitations . 12-25

Using Multiple Clocks in HDL Coder™ 12-27

Generating Bit-True Cycle-Accurate Models
13

Generated Model and Validation Model 13-2
Generated Model . 13-2
Validation Model . 13-3

Locate Numeric Differences After Speed
Optimization . 13-5

Optimization
14

Automatic Iterative Optimization 14-2
How Automatic Iterative Optimization Works 14-2
Automatic Iterative Optimization Output 14-3
Automatic Iterative Optimization Report 14-3
Requirements for Automatic Iterative Optimization . . 14-4
Limitations of Automatic Iterative Optimization 14-4

Optimization With Constrained Overclocking 14-5
Why Constrain Overclocking? 14-5
When to Use Constrained Overclocking 14-5
Set Overclocking Constraints 14-6
Constrained Overclocking Limitations 14-6

Maximum Oversampling Ratio . 14-8
What Is the Maximum Oversampling Ratio? 14-8
Specify Maximum Oversampling Ratio 14-8

xix

Maximum Oversampling Ratio Limitations 14-9

Maximum Computation Latency 14-10
What Is Maximum Computation Latency? 14-10
Specify Maximum Computation Latency 14-11
Maximum Computation Latency Restrictions 14-11

Streaming . 14-12
What is Streaming? . 14-12
Specify Streaming . 14-13
Requirements and Limitations for Streaming 14-13

Area Reduction with Streaming 14-15
The Validation Model . 14-19

Resource Sharing . 14-23
What Is Resource Sharing? . 14-23
Benefits and Costs of Resource Sharing 14-24
Specify Resource Sharing . 14-24
Requirements for Resource Sharing 14-24
Resource Sharing Information in Reports 14-27

Check Compatibility for Resource Sharing 14-28

Delay Balancing . 14-29
Why Use Delay Balancing . 14-29
Specify Delay Balancing . 14-29
Delay Balancing Limitations 14-31

Resolve Numerical Mismatch with Delay Balancing . 14-32

Find Feedback Loops . 14-36
Using the HDL Workflow Advisor 14-36
Using the Configuration Parameters Dialog Box 14-37
Using the Command Line . 14-37
Remove Highlighting . 14-37
Limitations . 14-37

Hierarchy Flattening . 14-38
What Is Hierarchy Flattening? 14-38
When To Flatten Hierarchy . 14-38
Prerequisites For Hierarchy Flattening 14-38
Options For Hierarchy Flattening 14-39

xx Contents

How To Flatten Hierarchy . 14-39
Limitations For Hierarchy Flattening 14-40

Optimize Loops in the MATLAB Function Block 14-41
Loop Streaming . 14-41
Loop Unrolling . 14-41
MATLAB Function Block Loop Optimization Options 14-41
How to Optimize MATLAB Function Block Loops . . . 14-42
Limitations for MATLAB Function Block Loop

Optimization . 14-42

RAM Mapping . 14-43

RAM Mapping with the MATLAB Function Block . . . 14-44

Insert Distributed Pipeline Registers in a Subsystem 14-47

Distributed Pipelining and Hierarchical Distributed
Pipelining . 14-52

What is Distributed Pipelining? 14-52
Benefits and Costs of Distributed Pipelining 14-54
Requirements for Distributed Pipelining 14-55
Specify Distributed Pipelining 14-55
Limitations of Distributed Pipelining 14-55
What is Hierarchical Distributed Pipelining? 14-57
Benefits of Hierarchical Distributed Pipelining 14-60
Specify Hierarchical Distributed Pipelining 14-60
Limitations of Hierarchical Distributed Pipelining . . 14-61
Distributed Pipelining Workflow 14-61
Selected Bibliography . 14-61

Constrained Output Pipelining 14-62
What is Constrained Output Pipelining? 14-62
When To Use Constrained Output Pipelining 14-62
Requirements for Constrained Output Pipelining . . . 14-62
Specify Constrained Output Pipelining 14-63
Limitations of Constrained Output Pipelining 14-63

Pipeline Variables in the MATLAB Function Block . . 14-64
Using the HDL Block Properties Dialog Box 14-64
Using the Command Line . 14-64
Limitations of Variable Pipelining 14-64

xxi

Reduce Critical Path With Distributed Pipelining . . 14-66

Clock-Rate Pipelining . 14-73
Need For Clock-Rate Pipelining 14-73
How Clock-Rate Pipelining Works 14-74
Best Practices For Clock-Rate Pipelining 14-74
When To Disable Clock-Rate Pipelining 14-74
How To Specify Clock-Rate Pipelining 14-74
Limitations For Clock-Rate Pipelining 14-75

Code Generation Reports, HDL Compatibility
Checker, Block Support Library, and Code

Annotation
15

Create and Use Code Generation Reports 15-2
Information Included in Code Generation Reports 15-2
HDL Code Generation Report Summary 15-3

Resource Utilization Report . 15-4

Optimization Report . 15-6
Hierarchical Distributed Pipelining in the Optimization

Report . 15-8

Traceability Report . 15-9
Traceability Report Overview 15-9
Generating a Traceability Report from Configuration

Parameters . 15-13
Generating a Traceability Report from the Command

Line . 15-16
Keeping the Report Current 15-18
Tracing from Code to Model 15-18
Tracing from Model to Code 15-20
Mapping Model Elements to Code Using the Traceability

Report . 15-23
Traceability Report Limitations 15-24

Web View of Model in Code Generation Report 15-26
About Model Web View . 15-26

xxii Contents

Generate HTML Code Generation Report with Model Web
View . 15-26

Model Web View Limitations 15-28

Generate Code with Annotations or Comments 15-29
Simulink Annotations . 15-29
Text Comments . 15-29
Requirements Comments and Hyperlinks 15-29

Check Your Model for HDL Compatibility 15-33

Create a Supported Blocks Library 15-36

Trace Code Using the Mapping File 15-38

Add or Remove the HDL Configuration Component . 15-41
What Is the HDL Configuration Component? 15-41
Adding the HDL Coder Configuration Component To a

Model . 15-41
Removing the HDL Coder Configuration Component From

a Model . 15-41

HDL Coding Standards
16

HDL Coding Standard Report . 16-2
Rule Summary . 16-2
Rule Hierarchy . 16-2
Rule and Report Customization 16-3
How To Fix Warnings and Errors 16-3

HDL Coding Standards . 16-4

Generate an HDL Coding Standard Report from
Simulink . 16-5

Using the HDL Workflow Advisor 16-5
Using the Command Line . 16-7

HDL Coding Standard Rules . 16-9

xxiii

Generate an HDL Lint Tool Script 16-15
How To Generate an HDL Lint Tool Script 16-15

Interfacing Subsystems and Models to HDL Code
17

Generate Black Box Interface for Subsystem 17-2
What Is a Black Box Interface? 17-2
Generate a Black Box Interface for a Subsystem 17-2
Generate Code for a Black Box Subsystem

Implementation . 17-6
Restriction for Multirate DUTs 17-7

Generate Reusable Code for Atomic Subsystems 17-8
Requirements for Generating Reusable Code for Atomic

Subsystems . 17-8
Generate Reusable Code for Identical Atomic

Subsystems . 17-8
Generate Reusable Code for Atomic Subsystems with

Tunable Mask Parameters 17-11

Model Referencing for HDL Code Generation 17-17
Benefits of Model Referencing for Code Generation . . 17-17
How To Generate Code for a Referenced Model 17-17
Limitations for Model Reference Code Generation . . . 17-18

Generate Black Box Interface for Referenced Model 17-19
When to Generate a Black Box Interface 17-19
How to Generate a Black Box Interface 17-19

Create a Xilinx System Generator Subsystem 17-21
Why Use Xilinx System Generator Subsystems? 17-21
Requirements for Xilinx System Generator

Subsystems . 17-21
How to Create a Xilinx System Generator Subsystem 17-22
Limitations for Code Generation from Xilinx System

Generator Subsystems . 17-22

Create an Altera DSP Builder Subsystem 17-23
Why Use Altera DSP Builder Subsystems? 17-23

xxiv Contents

Requirements for Altera DSP Builder Subsystems . . . 17-23
How to Create an Altera DSP Builder Subsystem . . . 17-24
Determine Clocking Requirements for Altera DSP Builder

Subsystems . 17-24
Limitations for Code Generation from Altera DSP Builder

Subsystems . 17-25

Using Xilinx System Generator for DSP with HDL
Coder . 17-26

Generate a Cosimulation Model 17-30
What Is A Cosimulation Model? 17-30
Generating a Cosimulation Model from the GUI 17-31
Structure of the Generated Model 17-36
Launching a Cosimulation . 17-43
The Cosimulation Script File 17-46
Complex and Vector Signals in the Generated

Cosimulation Model . 17-48
Generating a Cosimulation Model from the Command

Line . 17-50
Naming Conventions for Generated Cosimulation Models

and Scripts . 17-51
Limitations for Cosimulation Model Generation 17-51

Customize Black Box or HDL Cosimulation Interface 17-53
Interface Parameters . 17-53
Specify Bidirectional Ports . 17-55

Pass-Through and No-Op Implementations 17-57

Stateflow HDL Code Generation Support
18

Introduction to Stateflow HDL Code Generation 18-2
Overview . 18-2
Example . 18-2

Hardware Realization of Stateflow Semantics 18-3

xxv

Generate HDL for Mealy and Moore Finite State
Machines . 18-4

Overview . 18-4
Generating HDL for a Mealy Finite State Machine . . . 18-5
Generating HDL Code for a Moore Finite State

Machine . 18-9

Design Patterns Using Advanced Chart Features . . . 18-13
Temporal Logic . 18-13
Graphical Function . 18-15
Hierarchy and Parallelism . 18-17
Stateless Charts . 18-17
Truth Tables . 18-19

Generating HDL Code with the MATLAB
Function Block

19
HDL Applications for the MATLAB Function Block . . 19-2

Viterbi Decoder with the MATLAB Function Block . . 19-3

Code Generation from a MATLAB Function Block . . . 19-4
Counter Model Using the MATLAB Function block . . . 19-4
Setting Up . 19-6
Creating the Model and Configuring General Model

Settings . 19-7
Adding a MATLAB Function Block to the Model 19-8
Set Fixed-Point Options for the MATLAB Function

Block . 19-10
Programming the MATLAB Function Block 19-14
Constructing and Connecting the DUT_eML_Block

Subsystem . 19-15
Compiling the Model and Displaying Port Data Types 19-17
Simulating the eml_hdl_incrementer_tut Model 19-18
Generating HDL Code . 19-19

Generate Instantiable Code for Functions 19-22
How To Generate Instantiable Code for Functions . . . 19-22
Generate Code Inline for Specific Functions 19-23

xxvi Contents

Limitations for Instantiable Code Generation for
Functions . 19-23

MATLAB Function Block Design Patterns for HDL . . 19-24
The eml_hdl_design_patterns Library 19-24
Efficient Fixed-Point Algorithms 19-26
Model State Using Persistent Variables 19-29
Creating Intellectual Property with the MATLAB

Function Block . 19-30
Nontunable Parameter Arguments 19-31
Modeling Control Logic and Simple Finite State

Machines . 19-31
Modeling Counters . 19-32
Modeling Hardware Elements 19-33

Design Guidelines for the MATLAB Function Block . 19-35
Introduction . 19-35
Use Compiled External Functions With MATLAB

Function Blocks . 19-35
Build the MATLAB Function Block Code First 19-35
Use the hdlfimath Utility for Optimized FIMATH

Settings . 19-36
Use Optimal Fixed-Point Option Settings 19-38
Set the Output Data Type of MATLAB Function Blocks

Explicitly . 19-40

Distributed Pipeline Insertion for MATLAB Function
Blocks . 19-41

Overview . 19-41
Distributed Pipelining in a Multiplier Chain 19-41

Generating Scripts for HDL Simulators and
Synthesis Tools

20
Generate Scripts for Compilation, Simulation, and

Synthesis . 20-2

Structure of Generated Script Files 20-3

xxvii

Properties for Controlling Script Generation 20-4
Enabling and Disabling Script Generation 20-4
Customizing Script Names . 20-4
Customizing Script Code . 20-5
Examples . 20-7

Configure Compilation, Simulation, Synthesis, and Lint
Scripts . 20-8

Compilation Script Options . 20-9
Simulation Script Options . 20-10
Synthesis Script Options . 20-12

Add Synthesis Attributes . 20-16

Configure Synthesis Project Using Tcl Script 20-17

Using the HDL Workflow Advisor
21

What Is the HDL Workflow Advisor? 21-2

Open the HDL Workflow Advisor 21-3

Using the HDL Workflow Advisor Window 21-6

Save and Restore HDL Workflow Advisor State 21-9
How the Save and Restore Process Works 21-9
Limitations of the Save and Restore Process 21-9
Save the HDL Workflow Advisor State 21-9
Restore the HDL Workflow Advisor State 21-11

Fix a Workflow Advisor Warning or Failure 21-13

View and Save HDL Workflow Advisor Reports 21-15
Viewing HDL Workflow Advisor Reports 21-15
Saving HDL Workflow Advisor Reports 21-18

Map to an FPGA Floating-Point Library 21-20
What is an FPGA Floating-Point Library? 21-20
Why Map to an FPGA Floating Point Library? 21-20

xxviii Contents

Supported Floating-Point Operations 21-20
Setup for FPGA Floating-Point Library Mapping 21-21
How to Map to an FPGA Floating-Point Library 21-22
FPGA Floating-Point Library Mapping Results

Analysis . 21-23
Limitations for FPGA Floating-Point Library Mapping 21-23

FPGA Synthesis and Analysis 21-25
FPGA Synthesis and Analysis Tasks Overview 21-25
Creating a Synthesis Project 21-25
Performing Synthesis, Mapping, and Place and Route 21-27
Annotating Your Model with Critical Path

Information . 21-30

Automated Workflows for Specific Targets and Tools 21-35

HDL Test Bench
22

Generate Test Bench With File I/O 22-2
When to Use File I/O In Test Bench 22-2
How Test Bench Generation with File I/O Works 22-2
Test Bench Data Files . 22-2
How to Generate Test Bench with File I/O 22-3
Limitations When Using File I/O In Test Bench 22-4

FPGA Board Customization
23

FPGA Board Customization . 23-2
Feature Description . 23-2
Custom Board Management . 23-2
FPGA Board Requirements . 23-2

Create Custom FPGA Board Definition 23-7

xxix

Create Xilinx KC705 Evaluation Board Definition
File . 23-8

Overview . 23-8
What You Need to Know Before Starting 23-8
Start New FPGA Board Wizard 23-9
Provide Basic Board Information 23-10
Specify FPGA Interface Information 23-12
Enter FPGA Pin Numbers . 23-13
Run Optional Validation Tests 23-15
Save Board Definition File . 23-17
Use New FPGA Board . 23-18

FPGA Board Manager . 23-21
Introduction . 23-21
Filter . 23-23
Search . 23-23
FIL Enabled/Turnkey Enabled 23-23
Create Custom Board . 23-23
Add Board From File . 23-23
Get More Boards . 23-23
View/Edit . 23-24
Remove . 23-24
Clone . 23-24
Validate . 23-24

New FPGA Board Wizard . 23-25
Basic Information . 23-26
Interfaces . 23-27
FIL I/O . 23-28
Turnkey I/O . 23-30
Validation . 23-33
Finish . 23-35

FPGA Board Editor . 23-36
General . 23-36
Interface . 23-38

xxx Contents

HDL Workflow Advisor Tasks
24

HDL Workflow Advisor Tasks . 24-2
HDL Workflow Advisor Tasks Overview 24-3
Set Target Overview . 24-4
Set Target Device and Synthesis Tool 24-5
Set Target Library . 24-6
Set Target Interface . 24-6
Set Target Frequency . 24-7
Set Target Interface . 24-7
Set Target Interface . 24-8
Prepare Model For HDL Code Generation Overview . . 24-9
Check Global Settings . 24-10
Check Algebraic Loops . 24-10
Check Block Compatibility . 24-11
Check Sample Times . 24-11
Check FPGA-in-the-Loop Compatibility 24-12
HDL Code Generation Overview 24-12
Set Code Generation Options Overview 24-12
Set Basic Options . 24-13
Set Advanced Options . 24-13
Set Testbench Options . 24-14
Generate RTL Code and Testbench 24-14
Generate RTL Code and IP Core 24-15
FPGA Synthesis and Analysis Overview 24-16
Create Project . 24-17
Perform Synthesis and P/R Overview 24-17
Perform Logic Synthesis . 24-18
Perform Mapping . 24-18
Perform Place and Route . 24-19
Run Synthesis . 24-19
Run Implementation . 24-20
Annotate Model with Synthesis Result 24-20
Download to Target Overview 24-21
Generate Programming File 24-21
Program Target Device . 24-22
Generate Simulink Real-Time Interface 24-22
Save and Restore HDL Workflow Advisor State 24-22
FPGA-in-the-Loop Implementation 24-22
Set FIL Options . 24-22
Build FPGA-in-the-Loop . 24-23
Check USRP® Compatibility 24-23

xxxi

Verify with HDL Cosimulation 24-24
Generate FPGA Implementation 24-24
Check SDR Compatibility . 24-24
SDR FPGA Implementation 24-24
Set SDR Options . 24-25
Build SDR . 24-26
Embedded System Integration 24-26
Create Project . 24-27
Generate Software Interface Model 24-27
Build FPGA Bitstream . 24-27
Program Target Device . 24-28

Hardware-Software Codesign

Hardware-Software Codesign Basics
25

Hardware-Software Codesign Workflow 25-2

Custom IP Core Generation . 25-5
Custom IP Core Architectures 25-5
Target Platform Interfaces . 25-6
Processor/FPGA Synchronization 25-6
Custom IP Core Generated Files 25-7

Custom IP Core Report . 25-8
Summary . 25-8
Target Interface Configuration 25-8
Register Address Mapping . 25-9
IP Core User Guide . 25-10
IP Core File List . 25-11

Generate a Board-Independent IP Core from
Simulink . 25-13

Generate a Board-Independent IP Core 25-13
Requirements and Limitations for IP Core Generation 25-16

xxxii Contents

Processor and FPGA Synchronization 25-17
Free Running Mode . 25-17
Coprocessing – Blocking Mode 25-18
Coprocessing – Nonblocking With Delay Mode 25-18

Target SoC Platforms and Speedgoat Boards
26

Hardware-Software Codesign Workflow for SoC
Platforms . 26-2

Generate Simulink Real-Time Interface for Speedgoat
Boards . 26-11

Select a Speedgoat Target Device 26-11
Set the Target Interface for Speedgoat Boards 26-14
Code Generation, Synthesis, and Generation of Simulink

Real-Time Interface Subsystem 26-17

HDL Code Generation from MATLAB

1

MATLAB Algorithm Design

• “Data Types and Scope” on page 1-2
• “Operators” on page 1-4
• “Control Flow Statements” on page 1-6
• “Persistent Variables” on page 1-8
• “Persistent Array Variables” on page 1-10
• “Complex Data Type Support” on page 1-11
• “System Objects” on page 1-14
• “Predefined System Objects Supported for HDL Code Generation” on page 1-17
• “Load constants from a MAT-File” on page 1-18
• “Generate Code for User-Defined System Objects” on page 1-19
• “Map Matrices to ROM” on page 1-22
• “Fixed-Point Bitwise Functions” on page 1-23
• “Fixed-Point Run-Time Library Functions” on page 1-29
• “Model State with Persistent Variables and System Objects” on page 1-34
• “Bit Shifting and Bit Rotation” on page 1-38
• “Bit Slicing and Bit Concatenation” on page 1-41
• “Guidelines for Efficient HDL Code” on page 1-43
• “MATLAB Design Requirements for HDL Code Generation” on page 1-44
• “What Is a MATLAB Test Bench?” on page 1-45
• “MATLAB Test Bench Requirements and Best Practices” on page 1-46

1 MATLAB Algorithm Design

1-2

Data Types and Scope

Supported Data Types

HDL Coder™ supports the following subset of MATLAB data types.

Types Supported Data Types Restrictions

Integer • uint8, uint16, uint32,
uint64

• int8, int16, int32, int64

In Simulink®, MATLAB Function
block ports must use numeric types
sfix64 or ufix64 for 64-bit data.

Real • double

• single

HDL code generated with double
or single data types can be
used for simulation, but is not
synthesizable.

Character char
Logical logical
Fixed point • Scaled (binary point only)

fixed-point numbers
• Custom integers (zero binary

point)

Fixed-point numbers with slope
(not equal to 1.0) and bias (not
equal to 0.0) are not supported.

Maximum word size for fixed-point
numbers is 128 bits.

Vectors • unordered {N}
• row {1, N}
• column {N, 1}

The maximum number of vector
elements allowed is 2^32.

Before a variable is subscripted, it
must be fully defined.

Matrices {N, M} Matrices are supported in the body
of the design algorithm, but are not
supported as inputs to the top-level
design function.

Do not use matrices in the
testbench.

Structures struct Structures are supported in the
body of the design algorithm, but

 Data Types and Scope

1-3

Types Supported Data Types Restrictions

are not supported as inputs to the
top-level design function.

Do not use structures in the
testbench.

Enumerations enumeration Enumerations are supported in
the body of the design algorithm
and in the test bench, but are not
supported as inputs or outputs of
the top-level design function.

Enumeration values must be
monotonically increasing.

If your target language is Verilog®,
all enumeration member names
must be unique within the design.

Unsupported Data Types

In the current release, the following data types are not supported:

• Cell array
• Inf

Scope for Variables

Global variables are not supported for HDL code generation.

1 MATLAB Algorithm Design

1-4

Operators

Arithmetic Operators

HDL Coder supports the arithmetic operators (and equivalent MATLAB functions) listed
in the following table.

Operation Operator Syntax Equivalent Function Restrictions

Binary addition A+B plus(A,B) Neither A nor B
can be data type
logical.

Matrix
multiplication

A*B mtimes(A,B)

Arraywise
multiplication

A.*B times(A,B) Neither A nor B
can be data type
logical.

Matrix power A^B mpower(A,B) A and B must be
scalar, and B must
be an integer.

Arraywise power A.^B power(A,B) A and B must be
scalar, and B must
be an integer.

Complex transpose A' ctranspose(A)
Matrix transpose A.' transpose(A)
Matrix concat [A B] None
Matrix index A(r c) None Before you use a

variable, you must
fully define it.

Relational Operators

HDL Coder supports the relational operators (and equivalent MATLAB functions) listed
in the following table.

Relation Operator Syntax Equivalent Function

Less than A<B lt(A,B)

 Operators

1-5

Relation Operator Syntax Equivalent Function

Less than or equal to A<=B le(A,B)

Greater than or equal to A>=B ge(A,B)

Greater than A>B gt(A,B)

Equal A==B eq(A,B)

Not equal A~=B ne(A,B)

Logical Operators

HDL Coder supports the logical operators (and equivalent MATLAB functions) listed in
the following table.

Relation Operator Syntax M Function
Equivalent

Notes

Logical And A&B and(A,B)
Logical Or A|B or(A,B)
Logical Xor A xor B xor(A,B)
Logical And
(short circuiting)

A&&B N/A Use short circuiting logical
operators within conditionals.
See also “Control Flow
Statements” on page 1-6.

Logical Or (short
circuiting)

A||B N/A Use short circuiting logical
operators within conditionals.
See also “Control Flow
Statements” on page 1-6.

Element
complement

~A not(A)

1 MATLAB Algorithm Design

1-6

Control Flow Statements

HDL Coder supports the following control flow statements and constructs with
restrictions.

Control Flow Statement Restrictions

for Do not use for loops without static bounds.

Do not use the & and | operators within conditions of a for
statement. Instead, use the && and || operators.

HDL Coder does not support nonscalar expressions in the
conditions of for statements. Instead, use the all or any
functions to collapse logical vectors into scalars.

if Do not use the & and | operators within conditions of an if
statement. Instead, use the && and || operators.

HDL Coder does not support nonscalar expressions in the
conditions of if statements. Instead, use the all or any
functions to collapse logical vectors into scalars.

switch The conditional expression in a switch or case statement must
use only:

• uint8, uint16, uint32, int8, int16, or int32 data types
• Scalar data

If multiple case statements make assignments to the same
variable, the numeric type and fimath specification for that
variable must be the same in every case statement.

The following control flow statements are not supported:

• while

• break

• continue

• return

• parfor

 Control Flow Statements

1-7

Vector Function Limitations Related to Control Statements

Avoid using the following vector functions, as they may generate loops containing break
statements:

• isequal

• bitrevorder

1 MATLAB Algorithm Design

1-8

Persistent Variables

Persistent variables enable you to model registers. If you need to preserve state between
invocations of your MATLAB algorithm, use persistent variables.

Before you use a persistent variable, you must initialize it with a statement specifying
its size and type. You can initialize a persistent variable with either a constant value or a
variable, as in the following examples:

% Initialize with a constant

persistent p;

if isempty(p)

 p = fi(0,0,8,0);

end

% Initialize with a variable

initval = fi(0,0,8,0);

persistent p;

if isempty(p)

 p = initval;

end

Use a logical expression that evaluates to a constant to test whether a persistent variable
has been initialized, as in the preceding examples. Using a logical expression that
evaluates to a constant ensures that the generated HDL code for the test is executed only
once, as part of the reset process.

You can initialize multiple variables within a single logical expression, as in the following
example:

% Initialize with variables

initval1 = fi(0,0,8,0);

initval2 = fi(0,0,7,0);

persistent p;

if isempty(p)

 x = initval1;

 y = initval2;

end

 Persistent Variables

1-9

Note: If persistent variables are not initialized as described above, extra sentinel
variables can appear in the generated code. These sentinel variables can translate to
inefficient hardware.

1 MATLAB Algorithm Design

1-10

Persistent Array Variables

Persistent array variables enable you to model RAM.

By default, the HDL Coder software optimizes the area of your design by mapping
persistent array variables to RAM. If persistent array variables are not mapped to RAM,
they map to registers. RAM mapping can therefore reduce the area of your design in the
target hardware.

To learn how persistent array variables map to RAM, see “Map Persistent Arrays and
dsp.Delay to RAM”.

 Complex Data Type Support

1-11

Complex Data Type Support
In this section...

“Declaring Complex Signals” on page 1-11
“Conversion Between Complex and Real Signals” on page 1-12
“Support for Vectors of Complex Numbers” on page 1-12

Declaring Complex Signals

The following MATLAB code declares several local complex variables. x and y are
declared by complex constant assignment; z is created using the using the complex()
function.
function [x,y,z] = fcn

% create 8 bit complex constants

x = uint8(1 + 2i);

y = uint8(3 + 4j);

z = uint8(complex(5, 6));

The following code example shows VHDL® code generated from the previous MATLAB
code.
ENTITY complex_decl IS

 PORT (

 clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 x_re : OUT std_logic_vector(7 DOWNTO 0);

 x_im : OUT std_logic_vector(7 DOWNTO 0);

 y_re : OUT std_logic_vector(7 DOWNTO 0);

 y_im : OUT std_logic_vector(7 DOWNTO 0);

 z_re : OUT std_logic_vector(7 DOWNTO 0);

 z_im : OUT std_logic_vector(7 DOWNTO 0));

END complex_decl;

ARCHITECTURE fsm_SFHDL OF complex_decl IS

BEGIN

 x_re <= std_logic_vector(to_unsigned(1, 8));

 x_im <= std_logic_vector(to_unsigned(2, 8));

 y_re <= std_logic_vector(to_unsigned(3, 8));

 y_im <= std_logic_vector(to_unsigned(4, 8));

 z_re <= std_logic_vector(to_unsigned(5, 8));

 z_im <= std_logic_vector(to_unsigned(6, 8));

END fsm_SFHDL;

As shown in the example, complex inputs, outputs and local variables declared in
MATLAB code expand into real and imaginary signals. The naming conventions for these
derived signals are:

1 MATLAB Algorithm Design

1-12

• Real components have the same name as the original complex signal, suffixed with
the default string '_re' (for example, x_re). To specify a different suffix, set the
Complex real part postfix option (or the corresponding ComplexRealPostfix
CLI property).

• Imaginary components have the same name as the original complex signal,
suffixed with the string '_im' (for example, x_im). To specify a different
suffix, set the Complex imaginary part postfix option (or the corresponding
ComplexImagPostfix CLI property).

A complex variable declared in MATLAB code remains complex during the entire length
of the program.

Conversion Between Complex and Real Signals

The MATLAB code provides access to the fields of a complex signal via the real() and
imag() functions, as shown in the following code.
function [Re_part, Im_part]= fcn(c)

% Output real and imaginary parts of complex input signal

Re_part = real(c);

Im_part = imag(c);

HDL Coder supports these constructs, accessing the corresponding real and imaginary
signal components in generated HDL code. In the following Verilog code example, the
MATLAB complex signal variable c is flattened into the signals c_re and c_im. Each of
these signals is assigned to the output variables Re_part and Im_part, respectively.
module Complex_To_Real_Imag (clk, clk_enable, reset, c_re, c_im, Re_part, Im_part);

 input clk;

 input clk_enable;

 input reset;

 input [3:0] c_re;

 input [3:0] c_im;

 output [3:0] Re_part;

 output [3:0] Im_part;

 // Output real and imaginary parts of complex input signal

 assign Re_part = c_re;

 assign Im_part = c_im;

Support for Vectors of Complex Numbers

You can generate HDL code for vectors of complex numbers. Like scalar complex
numbers, vectors of complex numbers are flattened down to vectors of real and imaginary
parts in generated HDL code.

 Complex Data Type Support

1-13

For example in the following script t is a complex vector variable of base type ufix4 and
size [1,2].
function y = fcn(u1, u2)

t = [u1 u2];

y = t+1;

In the generated HDL code the variable t is broken down into real and imaginary parts
with the same two-element array. .
VARIABLE t_re : vector_of_unsigned4(0 TO 3);

VARIABLE t_im : vector_of_unsigned4(0 TO 3);

The real and imaginary parts of the complex number have the same vector of type
ufix4, as shown in the following code.
TYPE vector_of_unsigned4 IS ARRAY (NATURAL RANGE <>) OF unsigned(3 DOWNTO 0);

Complex vector-based operations (+,-,* etc.,) are similarly broken down to vectors of real
and imaginary parts. Operations are performed independently on the elements of such
vectors, following MATLAB semantics for vectors of complex numbers.

In both VHDL and Verilog code generated from MATLAB code, complex vector ports
are always flattened. If complex vector variables appear on inputs and outputs, real and
imaginary vector components are further flattened to scalars.

In the following code, u1 and u2 are scalar complex numbers and y is a vector of complex
numbers.
function y = fcn(u1, u2)

t = [u1 u2];

y = t+1;

This generates the following port declarations in a VHDL entity definition.
ENTITY _MATLAB_Function IS

 PORT (

 clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 u1_re : IN vector_of_std_logic_vector4(0 TO 1);

 u1_im : IN vector_of_std_logic_vector4(0 TO 1);

 u2_re : IN vector_of_std_logic_vector4(0 TO 1);

 u2_im : IN vector_of_std_logic_vector4(0 TO 1);

 y_re : OUT vector_of_std_logic_vector32(0 TO 3);

 y_im : OUT vector_of_std_logic_vector32(0 TO 3));

END _MATLAB_Function;

1 MATLAB Algorithm Design

1-14

System Objects
In this section...

“Why Use System Objects?” on page 1-14
“Predefined System Objects” on page 1-14
“User-Defined System Objects” on page 1-14
“Limitations of HDL Code Generation for System Objects” on page 1-15
“System object Examples for HDL Code Generation” on page 1-16

HDL Coder supports both predefined and user-defined System objects for code
generation.

Why Use System Objects?

System objects provide a design advantage because:

• You can save time during design and testing by using existing System object
components.

• You can design and qualify custom System objects for reuse in multiple designs.
• You can define your algorithm in a System object once, and reuse multiple instances

of it in a single MATLAB design.

This idiom cannot be used with MATLAB functions that have state. For example, if
the algorithm has state and requires the use of persistent variables, that function
cannot be instantiated multiple times in a design. Instead, you would need to copy
and rename the function for each instance.

• HDL code that you generate from System objects is modular and more readable.

Predefined System Objects

Predefined System objects that are available with MATLAB, DSP System Toolbox™, and
Communications System Toolbox™ are supported for HDL code generation. For a list,
see “ Predefined System Objects Supported for HDL Code Generation”.

User-Defined System Objects

You can create user-defined System objects for HDL code generation. For an example, see
“Generate Code for User-Defined System Objects”.

 System Objects

1-15

Limitations of HDL Code Generation for System Objects

The following limitations apply to HDL code generation for all System objects:

• Your design can call the step method only once per System object.
• step must not be inside a nested conditional statement, such as a nested loop, if

statement, or switch statement.
• step must not be inside a conditional statement that contains a matrix indexing

operation.
• A System object must be declared persistent if it has state.

A System object has state when it has a tunable private or public property, or a
property with the DiscreteState attribute.

• You can use the dsp.Delay System object only in feed-forward delay modeling.
• Enumerations are not supported.

Supported Methods

For predefined System Objects, step is the only method supported for HDL code
generation.

For user-defined System Objects, either the step method, or the output and update
methods, are supported for HDL code generation.

Additional Restrictions for Predefined System Objects

Predefined System objects are not supported for HDL code generation from within a
MATLAB System block.

Additional Restrictions for User-Defined System Objects

In addition to the limitations for all System objects, the following restrictions apply to
user-defined System objects for HDL code generation:

• If your design uses the output and update methods, it can call each method only
once per System object.

• Public properties must be nontunable.
• Initial and reset values for properties must be compile-time constant.
• User-defined System objects must not be public properties.

1 MATLAB Algorithm Design

1-16

System object Examples for HDL Code Generation

To learn how to use System objects for HDL code generation, view the MATLAB designs
in the following examples:

• “HDL Code Generation from System Objects”
• “Model State with Persistent Variables and System Objects”
• “Generate Code for User-Defined System Objects”
• “Integrate Custom HDL Code Into MATLAB Design”

Predefined System Objects Supported for HDL Code Generation

1-17

Predefined System Objects Supported for HDL Code Generation

HDL Coder supports the following MATLAB System objects for HDL code generation:

• hdl.RAM

• hdl.BlackBox

HDL Coder supports the following Communications System Toolbox System objects for
HDL code generation:

• comm.BPSKModulator, comm.BPSKDemodulator
• comm.PSKModulator, comm.PSKDemodulator
• comm.QPSKModulator, comm.QPSKDemodulator
• comm.RectangularQAMModulator, comm.RectangularQAMDemodulator
• comm.ConvolutionalInterleaver, comm.ConvolutionalDeinterleaver
• comm.ViterbiDecoder

• comm.HDLCRCDetector, comm.HDLCRCGenerator
• comm.HDLRSDecoder, comm.HDLRSEncoder

HDL Coder supports the following DSP System Toolbox System objects for HDL code
generation:

• dsp.Delay

• dsp.Maximum

• dsp.Minimum

• dsp.BiquadFilter

• dsp.DCBlocker

• dsp.HDLComplexToMagnitudeAngle

• dsp.HDLFFT, dsp.HDLIFFT
• dsp.HDLNCO

• dsp.FIRFilter

1 MATLAB Algorithm Design

1-18

Load constants from a MAT-File

You can load compile-time constants from a MAT-file with the coder.load function in
your MATLAB design.

For example, you can create a MAT-file, sinvals.mat, that contains fixed-point values
of sin by entering the following commands in MATLAB:

sinvals = sin(fi(-pi:0.1:pi, 1, 16,15));

save sinvals.mat sinvals;

You can then generate HDL code from the following MATLAB code, which loads the
constants from sinvals.mat into a persistent variable, pConstStruct, and assigns the
values to a variable that is not persistent, sv.

persistent pConstStruct;

if isempty(pConstStruct)

 pConstStruct = coder.load('sinvals.mat');

end

sv = pConstStruct.sinvals;

 Generate Code for User-Defined System Objects

1-19

Generate Code for User-Defined System Objects

In this section...

“How To Create A User-Defined System object” on page 1-19
“User-Defined System object Example” on page 1-19

How To Create A User-Defined System object

To create a user-defined System object and generate code:

1 Create a class that subclasses from matlab.System.
2 Define one of the following sets of methods:

• setup and step
• setup, output, and update

To use the output and update methods, your System object must also inherit
from the matlab.system.mixin.Nondirect class.

3 Write a top-level design function that creates an instance of your System object and
calls the step method, or the output and update methods.

4 Write a test bench function that exercises the top-level design function.
5 Generate HDL code.

User-Defined System object Example

This example shows how to generate HDL code for a user-defined System object that
implements the setup and step methods.

1 In a writable folder, create a System object, CounterSysObj, which subclasses from
matlab.System. Save the code as CounterSysObj.m.

classdef CounterSysObj < matlab.System

 properties (Nontunable)

 Threshold = int32(1)

 end

 properties (Access=private)

 State

1 MATLAB Algorithm Design

1-20

 Count

 end

 methods

 function obj = CounterSysObj(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 end

 methods (Access=protected)

 function setupImpl(obj, ~)

 % Initialize states

 obj.Count = int32(0);

 obj.State = int32(0);

 end

 function y = stepImpl(obj, u)

 if obj.Threshold > u(1)

 obj.Count(:) = obj.Count + u(1); % Increment count

 end

 y = obj.State; % Delay output

 obj.State = obj.Count; % Put new value in state

 end

 end

end

The stepImpl method implements the System object functionality. The setupImpl
and method defines the initial values for the persistent variables in the System
object.

2 Write a function that uses this System object and save it as myDesign.m. This
function is your DUT.

function y = myDesign(u)

persistent obj

if isempty(obj)

 obj = CounterSysObj;

end

y = step(obj, u);

end

3 Write a test bench that calls the DUT function and save it as myDesign_tb.m.

clear myDesign

for ii=1:10

 Generate Code for User-Defined System Objects

1-21

 y = myDesign(int32(ii));

end

4 Generate HDL code for the DUT function as you would for any other MATLAB code,
but skip fixed-point conversion.

More About
• “System Objects”

1 MATLAB Algorithm Design

1-22

Map Matrices to ROM

To map a matrix constant to ROM:

• Read one matrix element at a time.
• The matrix size must be greater than or equal to the RAM Mapping Threshold

value.

To learn how to set the RAM mapping threshold in Simulink, see
“RAMMappingThreshold”. To learn how to set the RAM mapping threshold in
MATLAB, see “How To Enable RAM Mapping”.

• Read accesses to the matrix must not be within a feedback loop.

If your MATLAB code meets these requirements, HDL Coder inserts a no-reset register
at the output of the matrix in the generated code. Many synthesis tools infer a ROM from
this code pattern.

 Fixed-Point Bitwise Functions

1-23

Fixed-Point Bitwise Functions
In this section...

“Overview” on page 1-23
“Bitwise Functions Supported for HDL Code Generation” on page 1-23

Overview

HDL Coder supports many bitwise functions that operate on fixed-point integers of
arbitrary length. For more information about these bitwise functions, see “Bitwise
Operations” in the Fixed-Point Designer™ documentation.

This section describes HDL code generation support for these functions. “Bitwise
Functions Supported for HDL Code Generation” on page 1-23 summarizes the
supported functions, with notes that describe considerations specific to HDL code
generation. “Bit Slicing and Bit Concatenation” on page 1-41 and “Bit Shifting and
Bit Rotation” on page 1-38 provide usage examples, with corresponding MATLAB and
generated HDL code.

Bitwise Functions Supported for HDL Code Generation

The following table summarizes MATLAB bitwise functions that are supported for HDL
code generation. The Description column notes considerations that are specific to HDL.
The following conventions are used in the table:

• a,b: Denote fixed-point integer operands.
• idx: Denotes an index to a bit within an operand. Indexes can be scalar or vector,

depending on the function.

MATLAB code uses 1-based indexing conventions. In generated HDL code, such
indexes are converted to zero-based indexing conventions.

• lidx, ridx: denote indexes to the left and right boundaries delimiting bit fields.
Indexes can be scalar or vector, depending on the function.

• val: Denotes a Boolean value.

Note: Indexes, operands, and values passed as arguments bitwise functions can be scalar
or vector, depending on the function. For information on the individual functions, see
“Bitwise Operations” in the Fixed-Point Designer documentation.

1 MATLAB Algorithm Design

1-24

MATLAB Syntax Description See Also

bitand(a, b) Bitwise AND bitand

bitandreduce(a,

lidx, ridx)

Bitwise AND of a field of consecutive bits
within a. The field is delimited by lidx ,
ridx.

Output data type: ufix1

For VHDL, generates the bitwise AND
operator operating on a set of individual
slices

For Verilog, generates the reduce operator:

&a[lidx:ridx]

bitandreduce

bitcmp(a) Bitwise complement bitcmp

bitconcat(a, b)

bitconcat([a_vector])

bitconcat(a,

b,c,d,...)

Concatenate fixed-point operands.

Operands can be of different signs.

Output data type: ufixN, where N is the
sum of the word lengths of a and b.

For VHDL, generates the concatenation
operator: (a & b)

For Verilog, generates the concatenation
operator: {a , b}

bitconcat

bitget(a,idx) Access a bit at position idx.

For VHDL, generates the slice operator:
a(idx)

For Verilog, generates the slice operator:
a[idx]

bitget

bitor(a, b) Bitwise OR bitor

 Fixed-Point Bitwise Functions

1-25

MATLAB Syntax Description See Also

bitorreduce(a,

lidx, ridx)

Bitwise OR of a field of consecutive bits
within a. The field is delimited by lidx and
ridx.

Output data type: ufix1

For VHDL, generates the bitwise OR
operator operating on a set of individual
slices.

For Verilog, generates the reduce operator:

|a[lidx:ridx]

bitorreduce

bitset(a, idx, val) Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset

bitreplicate(a, n) Concatenate bits of fi object a n times bitreplicate

bitrol(a, idx) Rotate left.

idx must be a positive integer. The value of
idx can be greater than the word length of
a. idx is normalized to mod(idx, wlen).
wlen is the word length of a.

For VHDL, generates the rol operator.

For Verilog, generates the following
expression (where wl is the word length of
a:

a << idx || a >> wl - idx

bitrol

1 MATLAB Algorithm Design

1-26

MATLAB Syntax Description See Also

bitror(a, idx) Rotate right.

idx must be a positive integer. The value of
idx can be greater than the word length of
a. idx is normalized to mod(idx, wlen) .
wlen is the word length of a.

For VHDL, generates the ror operator.

For Verilog, generates the following
expression (where wl is the word length of
a:

a >> idx || a << wl - idx

bitror

bitset(a, idx, val) Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset

bitshift(a, idx) Note: For efficient HDL code generation,
use bitsll, bitsrl, or bitsra instead of
bitshift.

Shift left or right, based on the positive or
negative integer value of‘idx.

idx must be an integer.

For positive values of idx, shift left idx
bits.

For negative values of idx, shift right idx
bits.

If idx is a variable, generated code contains
logic for both left shift and right shift.

Result values saturate if the overflowMode
of a is set to saturate.

bitshift

 Fixed-Point Bitwise Functions

1-27

MATLAB Syntax Description See Also

bitsliceget(a,

lidx, ridx)

Access consecutive set of bits from lidx to
ridx.

Output data type: ufixN, where N = lidx-
ridix+1.

bitsliceget

bitsll(a, idx) Shift left logical.

idx must be a scalar within the range

0 <= idx < wl

wl is the word length of a.

Overflow and rounding modes of input
operand a are ignored.

Generates sll operator in VHDL.

Generates << operator in Verilog.

bitsll

bitsra(a, idx) Shift right arithmetic.

idx must be a scalar within the range

0 <= idx < wl

wl is the word length of a,

Overflow and rounding modes of input
operand a are ignored.

Generates sra operator in VHDL.

Generates >>> operator in Verilog.

bitsra

1 MATLAB Algorithm Design

1-28

MATLAB Syntax Description See Also

bitsrl(a, idx) Shift right logical.

idx must be a scalar within the range

0 <= idx < wl

wl is the word length of a.

Overflow and rounding modes of input
operand a are ignored.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

bitsrl

bitxor(a, b) Bitwise XOR bitxor

bitxorreduce(a,

lidx, ridx)

Bitwise XOR reduction.

Bitwise XOR of a field of consecutive bits
within a. The field is delimited by lidx and
ridx.

Output data type: ufix1

For VHDL, generates a set of individual
slices.

For Verilog, generates the reduce operator:

^a[lidx:ridx]

bitxorreduce

getlsb(a) Return value of LSB. getlsb

getmsb(a) Return value of MSB. getmsb

 Fixed-Point Run-Time Library Functions

1-29

Fixed-Point Run-Time Library Functions

HDL code generation support for fixed-point run-time library functions from the
Fixed-Point Designer is summarized in the following table. See “Fixed-Point Function
Limitations” on page 1-33 for general limitations of fixed-point run-time library
functions for code generation.

Function Restrictions

abs Double data type not supported.
add None
all Double data type not supported.
any Double data type not supported.
bitand None
bitandreduce None
bitcmp None
bitconcat None
bitget None
bitor None
bitorreduce None
bitreplicate None
bitrol None
bitror None
bitset None
bitshift None
bitsliceget None
bitsll None
bitsra None
bitsrl None
bitxor None
bitxorreduce None
ceil None

1 MATLAB Algorithm Design

1-30

Function Restrictions

complex None
conj None
convergent None
ctranspose None
divide • For HDL Code generation, the divisor must be a constant

and a power of two.
• Non-fi inputs must be constant; that is, their values

must be known at compile time so that they can be cast to
fi objects.

• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax

T.divide(a,b).
end None
eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi
double signals.

eq None
fi None
fimath None
fix None
floor None
ge None
getlsb None
getmsb None
gt None
horzcat None
imag None
int8, int16, int32 None
iscolumn None

 Fixed-Point Run-Time Library Functions

1-31

Function Restrictions

isempty None
isequal None
isfi None
isfimath None
isfimathlocal None
isfinite None
isinf None
isnan None
isnumeric None
isnumerictype None
isreal None
isrow None
isscalar None
issigned None
isvector None
le None
length None
logical None
lowerbound None
lsb None
lt None
max None
min None
minus None
mpower Both inputs must be scalar, and the exponent input, k, must

be a constant integer.
mtimes None
ndims None

1 MATLAB Algorithm Design

1-32

Function Restrictions

ne None
nearest None
numberofelements None
numerictype None
plus Inputs cannot be data type logical.
power Both inputs must be scalar, and the exponent input, k, must

be a constant integer.
range None
real None
realmax None
realmin None
reinterpretcast None
repmat None
rescale None
reshape None
round None
sfi None
sign None
size None
sqrt None
sub None
subsasgn Supported data types for HDL code generation are listed in

“Supported Data Types” on page 1-2
subsref Supported data types for HDL code generation are listed in

“Supported Data Types” on page 1-2
sum None
times Inputs cannot be data type logical.
transpose None

 Fixed-Point Run-Time Library Functions

1-33

Function Restrictions

ufi None
uint8, uint16, uint32 None
uminus None
uplus Inputs cannot be data type logical.
upperbound None
vertcat None

Fixed-Point Function Limitations

In addition to function-specific limitations listed in the table, the following general
limitations apply to the use of Fixed-Point Designer functions in generated HDL code:

• fipref and quantizer objects are not supported.
• Slope and bias scaling are not supported.
• Dot notation is only supported for getting the values of fimath and numerictype

properties. Dot notation is not supported for fi objects, and it is not supported for
setting properties.

• Word lengths greater than 128 bits are not supported.
• You cannot change the fimath or numerictype of a given variable after that

variable has been created.
• The boolean and ScaledDouble values of the DataTypeMode and DataType

properties are not supported.
• For all SumMode property settings other than FullPrecision, the CastBeforeSum

property must be set to true.
• The numel function returns the number of elements of fi objects in the generated

code.
• General limitations of C/C++ code generated from MATLAB apply. See “MATLAB

Language Features Not Supported for C/C++ Code Generation” for more information.

1 MATLAB Algorithm Design

1-34

Model State with Persistent Variables and System Objects

This example shows how to use persistent variables and System objects to model state
and delays in a MATLAB® design for HDL code generation.

Introduction

Using System objects to model delay results in concise generated code.

In MATLAB, multiple calls to a function having persistent variables do not result in
multiple delays. Instead, the state in the function gets updated multiple times.

% In order to reuse code implemented in a function with states,

% you need to duplicate functions multiple times to create multiple

% instances of the algorithm with delay.

Examine the MATLAB Code

Let us take a quick look at the implementation of the Sobel algorithm.

Examine the design to see how the delays and line buffers are modeled using:

• Persistent variables: mlhdlc_sobel
• System objects: mlhdlc_sysobj_sobel

Notice that the 'filterdelay' function is duplicated with different function names in
'mlhdlc_sobel' code to instantiate multiple versions of the algorithm in MATLAB for HDL
code generation.

The delay line implementation is more complicated when done using MATLAB persistent
variables.

Now examine the simplified implementation of the same algorithm using System objects
in 'mlhdlc_sysobj_sobel'.

When used within the constraints of HDL code generation, the dsp.Delay objects always
map to registers. For persistent variables to be inferred as registers, you have to be
careful to read the variable before writing to it to map it to a register.

MATLAB Design

demo_files = {...

 Model State with Persistent Variables and System Objects

1-35

 'mlhdlc_sysobj_sobel', ...

 'mlhdlc_sysobj_sobel_tb', ...

 'mlhdlc_sobel', ...

 'mlhdlc_sobel_tb'

 };

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_delay_modeling'];

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

for ii=1:numel(demo_files)

 copyfile(fullfile(mlhdlc_demo_dir, [demo_files{ii},'.m*']), mlhdlc_temp_dir);

end

Known Limitations

HDL Coder™ only supports the 'step' method of the System object and does not support
'output' and 'update' methods.

With support for only the step method, delays cannot be used in modeling feedback
paths. For example, the following piece of MATLAB code cannot be supported using the
dsp.Delay System object.

%#codegen

function y = accumulate(u)

persistent p;

if isempty(p)

 p = 0;

end

y = p;

p = p + u;

Create a New HDL Coder Project

To create a new project, enter the following command:

1 MATLAB Algorithm Design

1-36

coder -hdlcoder -new mlhdlc_sobel

Next, add the file 'mlhdlc_sobel.m' to the project as the MATLAB Function and
'mlhdlc_sobel_tb.m' as the MATLAB Test Bench.

You can refer to the “Getting Started with MATLAB to HDL Workflow” tutorial for a
more complete tutorial on creating and populating MATLAB HDL Coder projects.

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right-click the 'Code Generation' step. Choose the
option 'Run to selected task' to run all the steps from the beginning through HDL code
generation.

Examine the generated HDL code by clicking the hyperlinks in the Code Generation Log
window.

Now, create a new project for the system object design:

coder -hdlcoder -new mlhdlc_sysobj_sobel

Add the file 'mlhdlc_sysobj_sobel.m' to the project as the MATLAB Function and
'mlhdlc_sysobj_sobel_tb.m' as the MATLAB Test Bench.

Repeat the code generation steps and examine the generated fixed-point MATLAB and
HDL code.

Additional Notes:

You can model integer delay using dsp.Delay object by setting the 'Length' property to
be greater than 1. These delay objects will be mapped to shift registers in the generated
code.

If the optimization option 'Map persistent array variables to RAMs' is enabled, delay
System objects will get mapped to block RAMs under the following conditions:

• 'InitialConditions' property of the dsp.Delay is set to zero.
• Delay input data type is not floating-point.
• RAMSize (DelayLength * InputWordLength) is greater than or equal to the 'RAM

Mapping Threshold'.

Clean up the Generated Files

 Model State with Persistent Variables and System Objects

1-37

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_delay_modeling'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

1 MATLAB Algorithm Design

1-38

Bit Shifting and Bit Rotation

HDL Coder supports shift and rotate functions that mimic HDL-specific operators
without saturation and rounding logic.

The following code implements a barrel shifter/rotator that performs a selected operation
(based on the mode argument) on a fixed-point input operand.

function y = fcn(u, mode)

% Multi Function Barrel Shifter/Rotator

% fixed width shift operation

fixed_width = uint8(3);

switch mode

 case 1

 % shift left logical

 y = bitsll(u, fixed_width);

 case 2

 % shift right logical

 y = bitsrl(u, fixed_width);

 case 3

 % shift right arithmetic

 y = bitsra(u, fixed_width);

 case 4

 % rotate left

 y = bitrol(u, fixed_width);

 case 5

 % rotate right

 y = bitror(u, fixed_width);

 otherwise

 % do nothing

 y = u;

end

In VHDL code generated for this function, the shift and rotate functions map directly to
shift and rotate instructions in VHDL.

 CASE mode IS

 WHEN "00000001" =>

 -- shift left logical

 --'<S2>:1:8'

 cr := signed(u) sll 3;

 y <= std_logic_vector(cr);

 Bit Shifting and Bit Rotation

1-39

 WHEN "00000010" =>

 -- shift right logical

 --'<S2>:1:11'

 b_cr := signed(u) srl 3;

 y <= std_logic_vector(b_cr);

 WHEN "00000011" =>

 -- shift right arithmetic

 --'<S2>:1:14'

 c_cr := SHIFT_RIGHT(signed(u) , 3);

 y <= std_logic_vector(c_cr);

 WHEN "00000100" =>

 -- rotate left

 --'<S2>:1:17'

 d_cr := signed(u) rol 3;

 y <= std_logic_vector(d_cr);

 WHEN "00000101" =>

 -- rotate right

 --'<S2>:1:20'

 e_cr := signed(u) ror 3;

 y <= std_logic_vector(e_cr);

 WHEN OTHERS =>

 -- do nothing

 --'<S2>:1:23'

 y <= u;

 END CASE;

The corresponding Verilog code is similar, except that Verilog does not have native
operators for rotate instructions.

 case (mode)

 1 :

 begin

 // shift left logical

 //'<S2>:1:8'

 cr = u <<< 3;

 y = cr;

 end

 2 :

 begin

 // shift right logical

 //'<S2>:1:11'

 b_cr = u >> 3;

 y = b_cr;

 end

 3 :

1 MATLAB Algorithm Design

1-40

 begin

 // shift right arithmetic

 //'<S2>:1:14'

 c_cr = u >>> 3;

 y = c_cr;

 end

 4 :

 begin

 // rotate left

 //'<S2>:1:17'

 d_cr = {u[12:0], u[15:13]};

 y = d_cr;

 end

 5 :

 begin

 // rotate right

 //'<S2>:1:20'

 e_cr = {u[2:0], u[15:3]};

 y = e_cr;

 end

 default :

 begin

 // do nothing

 //'<S2>:1:23'

 y = u;

 end

 endcase

For more fixed-point bitwise functions you can use in MATLAB code intended for HDL
code generation, see “Fixed-Point Bitwise Functions”.

 Bit Slicing and Bit Concatenation

1-41

Bit Slicing and Bit Concatenation

This section describes how to use the functions bitsliceget and bitconcat to
access and manipulate bit slices (fields) in a fixed-point or integer word. As an example,
consider the operation of swapping the upper and lower 4-bit nibbles of an 8-bit byte. The
following example accomplishes this task without resorting to traditional mask-and-shift
techniques.

function y = fcn(u)

% NIBBLE SWAP

y = bitconcat(…

 bitsliceget(u, 4, 1),

 bitsliceget(u, 8, 5));

The bitsliceget and bitconcat functions map directly to slice and concat operators
in both VHDL and Verilog.

The following listing shows the corresponding generated VHDL code.

ENTITY fcn IS

 PORT (

 clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 u : IN std_logic_vector(7 DOWNTO 0);

 y : OUT std_logic_vector(7 DOWNTO 0));

END nibble_swap_7b;

ARCHITECTURE fsm_SFHDL OF fcn IS

BEGIN

 -- NIBBLE SWAP

 y <= u(3 DOWNTO 0) & u(7 DOWNTO 4);

END fsm_SFHDL;

The following listing shows the corresponding generated Verilog code.

module fcn (clk, clk_enable, reset, u, y);

 input clk;

 input clk_enable;

 input reset;

1 MATLAB Algorithm Design

1-42

 input [7:0] u;

 output [7:0] y;

 // NIBBLE SWAP

 assign y = {u[3:0], u[7:4]};

endmodule

For more fixed-point bitwise functions you can use in MATLAB code intended for HDL
code generation, see “Fixed-Point Bitwise Functions”.

 Guidelines for Efficient HDL Code

1-43

Guidelines for Efficient HDL Code

When you generate HDL code from your MATLAB design, you are converting an
algorithm into an architecture that must meet hardware area and speed requirements.

For better HDL code and faster code generation, design your MATLAB code according to
the following best practices:

• Serialize your input and output data. Parallel data processing structures require more
hardware resources and a higher pin count.

• Use add and subtract algorithms instead of algorithms that use functions like sin,
divide, and modulo. Add and subtract operations use fewer hardware resources.

• Avoid large arrays and matrices. Large arrays and matrices require more registers
and RAM for storage.

• Convert your code from floating-point to fixed-point. Floating-point data types are
inefficient for hardware realization. HDL Coder provides an automated workflow for
floating-point to fixed-point conversion.

• Unroll loops. Unroll loops to increase speed at the cost of higher area; unroll fewer
loops and enable the loop streaming optimization to conserve area at the cost of lower
throughput.

1 MATLAB Algorithm Design

1-44

MATLAB Design Requirements for HDL Code Generation

Your MATLAB design has the following requirements:

• MATLAB code within the design must be supported for HDL code generation.
• Inputs and outputs must not be matrices or structures.

If you are generating code from the command line, verify your code readiness for code
generation with the following command:

coder.screener(‘design_function_name’)

If you use the HDL Workflow Advisor to generate code, this check runs automatically.

For a MATLAB language support reference, including supported functions from the
Fixed-Point Designer, see “MATLAB Algorithm Design”.

 What Is a MATLAB Test Bench?

1-45

What Is a MATLAB Test Bench?

A test bench is a MATLAB script or function that you write to test the algorithm in
your MATLAB design function. The test bench varies the input data to the design to
simulate real world conditions. It can also can check that the output data meets design
specifications.

HDL Coder uses the data it gathers from running your test bench with your design to
infer fixed-point data types for floating-point to fixed-point conversion. The coder also
uses the data to generate HDL test data for verifying your generated code. For more
information on how to write your test bench for the best results, see “MATLAB Test
Bench Requirements and Best Practices” on page 1-46.

1 MATLAB Algorithm Design

1-46

MATLAB Test Bench Requirements and Best Practices

MATLAB Test Bench Requirements

You can use any MATLAB data type and function in your test bench.

A MATLAB test bench has the following requirements:

• For floating-point to fixed-point conversion, the test bench must be a script or a
function with no inputs.

• The inputs and outputs in your MATLAB design interface must use the same data
types, sizes, and complexity in each call site in your test bench.

• If you enable the Accelerate test bench for faster simulation option in the
Float-to-Fixed Workflow, the MATLAB constructs in your test bench loop must be
compilable.

MATLAB Test Bench Best Practices

Use the following MATLAB test bench best practices:

• Design your test bench to cover the full numeric range of data that the design must
handle. HDL Coder uses the data that it accumulates from running the test bench to
infer fixed-point data types during floating-point to fixed-point conversion.

If you call the design function multiple times from your test bench, the coder uses
the accumulated data from each instance to infer fixed-point types. Both the design
and the test bench can call local functions within the file or other functions on the
MATLAB path. The call to the design function can be at any level of your test bench
hierarchy.

• Before trying to generate code, run your test bench in MATLAB . If simulation is slow,
accelerate your test bench. To learn how to accelerate your simulation, see “Accelerate
MATLAB Algorithms”.

• If you have a loop that calls your design function, use only compilable MATLAB
constructs within the loop and enable the Accelerate test bench for faster
simulation option.

• Before each test bench simulation run, use the clear variables command to reset
your persistent variables.

To see an example of a test bench, enter this command:

 MATLAB Test Bench Requirements and Best Practices

1-47

showdemo mlhdlc_tutorial_float2fixed_files

1-48

2

MATLAB Best Practices and Design
Patterns for HDL Code Generation

• “Model a Counter for HDL Code Generation” on page 2-2
• “Model a State Machine for HDL Code Generation” on page 2-5
• “Generate Hardware Instances For Local Functions” on page 2-10
• “Implement RAM Using MATLAB Code” on page 2-13
• “For-Loop Best Practices for HDL Code Generation” on page 2-16

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-2

Model a Counter for HDL Code Generation

In this section...

“MATLAB Counter” on page 2-2
“MATLAB Code for the Counter ” on page 2-3
“Best Practices in this Example” on page 2-4

MATLAB Counter

This design pattern shows a MATLAB example of a counter, which is suitable for HDL
code generation.

This model demonstrates the following best practices for writing MATLAB code to
generate HDL code:

• Initialize persistent variables.
• Read persistent variables before they are modified.

The schematic below shows the counter modeled in this example.

 Model a Counter for HDL Code Generation

2-3

MATLAB Code for the Counter

The function mlhdlc_counter is a behavioral model of a four bit synchronous up
counter. The input signal, enable_ctr, triggers the value of the count register,
count_val, to increase by one. The counter continues to increase by one each time the
input is nonzero, until the count reaches a limit of 15. After the counter reaches this
limit, the counter returns to zero. A persistent variable, which is initialized to zero,
represents the current value of the count. Two if statements determine the value of the
count based on the input.

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-4

The following section of code defines the mldhlc_counter function.

%#codegen

function count = mlhdlc_counter(enable_ctr)

%four bit synchronous up counter

%persistent variable for the state

persistent count_val;

if isempty(count_val)

 count_val = 0;

end

%counting up

if enable_ctr

 count_val=count_val+1;

 %limit to four bits

 if count_val>15

 count_val=0;

 end

end

count=count_val;

end

Best Practices in this Example

This design pattern demonstrates two best practices for writing MATLAB code for HDL
code generation:

• Initialize persistent variables to a specific value. In this example, an if statement
and the isempty function initialize the persistent variable. If the persistent variable
is not initialized then HDL code cannot be generated.

• Inside a function, read persistent variables before they are modified, in order for the
persistent variables to be inferred as registers.

 Model a State Machine for HDL Code Generation

2-5

Model a State Machine for HDL Code Generation
In this section...

“MATLAB State Machines” on page 2-5
“MATLAB Code for the Mealy State Machine” on page 2-5
“MATLAB Code for the Moore State Machine” on page 2-7
“Best Practices” on page 2-9

MATLAB State Machines

The following design pattern shows MATLAB examples of Mealy and Moore state
machines which are suitable for HDL code generation.

The MATLAB code in these models demonstrates best practices for writing MATLAB
models for HDL code generation.

• With a switch block, use the otherwise statement to account for all conditions.
• Use variables to designate states in a state machine.

In a Mealy state machine, the output depends on the state and the input. In a Moore
state machine, the output depends only on the state.

MATLAB Code for the Mealy State Machine

The following MATLAB code defines the mlhdlc_fsm_mealy function. A persistent
variable represents the current state. A switch block uses the current state and input
to determine the output and new state. In each case in the switch block, an if-else
statement calculates the new state and output.

%#codegen

function Z = mlhdlc_fsm_mealy(A)

% Mealy State Machine

% y = f(x,u) :

% all actions are condition actions and

% outputs are function of state and input

% define states

S1 = 0;

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-6

S2 = 1;

S3 = 2;

S4 = 3;

persistent current_state;

if isempty(current_state)

 current_state = S1;

end

% switch to new state based on the value state register

switch (current_state)

 case S1,

 % value of output 'Z' depends both on state and inputs

 if (A)

 Z = true;

 current_state = S1;

 else

 Z = false;

 current_state = S2;

 end

 case S2,

 if (A)

 Z = false;

 current_state = S1;

 else

 Z = true;

 current_state = S2;

 end

 case S3,

 if (A)

 Z = false;

 current_state = S2;

 else

 Z = true;

 current_state = S3;

 end

 case S4,

 Model a State Machine for HDL Code Generation

2-7

 if (A)

 Z = true;

 current_state = S1;

 else

 Z = false;

 current_state = S3;

 end

 otherwise,

 Z = false;

end

MATLAB Code for the Moore State Machine

The following MATLAB code defines the mlhdlc_fsm_moore function. A persistent
variable represents the current state, and a switch block uses the current state to
determine the output and new state. In each case in the switch block, an if-else
statement calculates the new state and output. The value of the state is represented by
numerical variables.

%#codegen

function Z = mlhdlc_fsm_moore(A)

% Moore State Machine

% y = f(x) :

% all actions are state actions and

% outputs are pure functions of state only

% define states

S1 = 0;

S2 = 1;

S3 = 2;

S4 = 3;

% using persistent keyword to model state registers in hardware

persistent curr_state;

if isempty(curr_state)

 curr_state = S1;

end

% switch to new state based on the value state register

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-8

switch (curr_state)

 case S1,

 % value of output 'Z' depends only on state and not on inputs

 Z = true;

 % decide next state value based on inputs

 if (~A)

 curr_state = S1;

 else

 curr_state = S2;

 end

 case S2,

 Z = false;

 if (~A)

 curr_state = S1;

 else

 curr_state = S2;

 end

 case S3,

 Z = false;

 if (~A)

 curr_state = S2;

 else

 curr_state = S3;

 end

 case S4,

 Z = true;

 if (~A)

 curr_state = S1;

 else

 curr_state = S3;

 end

 otherwise,

 Model a State Machine for HDL Code Generation

2-9

 Z = false;

end

Best Practices

This design pattern demonstrates two best practices for writing MATLAB code for HDL
code generation.

• With a switch block, use the otherwise statement to ensure that the model
accounts for all conditions. If the model does not cover all conditions, the generated
HDL code can contain errors.

• To designate the states in a state machine, use variables with numerical values.

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-10

Generate Hardware Instances For Local Functions

In this section...

“MATLAB Local Functions” on page 2-10
“MATLAB Code for mlhdlc_two_counters.m” on page 2-10

MATLAB Local Functions

The following example shows how to use local functions in MATLAB, so that each
execution of a local function corresponds to a separate hardware module in the generated
HDL code. This example demonstrates best practices for writing local functions in
MATLAB code that is suitable for HDL code generation.

• If your MATLAB code executes a local function multiple times, the generated HDL
code does not necessarily instantiate multiple hardware modules. Rather than
instantiating multiple hardware modules, multiple calls to a function typically update
the state variable.

• If you want the generated HDL code to contain multiple hardware modules
corresponding to each execution of a local function, specify two different local
functions with the same code but different function names. If you want to avoid code
duplication, consider using System objects to implement the behavior in the function,
and instantiate the System object multiple times.

• If you want to specify a separate HDL file for each local function in the MATLAB
code, in the Workflow Advisor, on the Advanced tab in the HDL Code Generation
section, select Generate instantiable code for functions .

MATLAB Code for mlhdlc_two_counters.m

This function creates two counters and adds the output of these counters. To create two
counters, there are two local functions with identical code, counter and counter2.
The main method calls each of these local functions once. If the function were to call
the counter function twice, separate hardware modules for the counters would not be
generated in the HDL code.

%#codegen

function total_count = mlhdlc_two_counters(a,b)

%This function contains a two different local functions with identical

 Generate Hardware Instances For Local Functions

2-11

%counters and calls each counter once.

total_count1=counter(a);

total_count2=counter2(b);

total_count=total_count1+total_count2;

function count = counter(enable_ctr)

%four bit synchronous up counter

%persistent variable for the state

persistent count_val;

if isempty(count_val)

 count_val = 0;

end

%counting up

if enable_ctr

 count_val=count_val+1;

end

%limit from four bits

if count_val>15

 count_val=0;

end

count=count_val;

function count = counter2(enable_ctr)

%four bit synchronous up counter

%persistent variable for the state

persistent count_val;

if isempty(count_val)

 count_val = 0;

end

%counting up

if enable_ctr

 count_val=count_val+1;

end

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-12

%limit from four bits

if count_val>15

 count_val=0;

end

count=count_val;

 Implement RAM Using MATLAB Code

2-13

Implement RAM Using MATLAB Code

In this section...

“Implementation of RAM” on page 2-13
“Implement RAM Using a Persistent Array or System object Properties” on page
2-13
“Implement RAM Using hdl.RAM ” on page 2-14

Implementation of RAM

You can write MATLAB code that maps to RAM during HDL code generation by using:

• Persistent arrays or private properties in a user-defined System object.
• hdl.RAM System objects.

The following examples model the same line delay in MATLAB. However, one example
uses a persistent array and the other uses an hdl.RAM System object to model the RAM
behavior.

The line delay uses memory in a ring structure. Data is written to one location and
read from another location in such a way that the data written is read after a delay of
a specific number of cycles. The RAM read address is generated by a counter. The write
address is generated by adding a constant value to the read address.

For a comparison of the ways you can write MATLAB code to map to RAM during HDL
code generation, and for an overview of the tradeoffs, see “RAM Mapping Comparison
for MATLAB Code”. For more information, see “Map Persistent Arrays and dsp.Delay to
RAM”.

Implement RAM Using a Persistent Array or System object Properties

This example shows a line delay that implements the RAM behavior using a persistent
array with the function mlhdlc_hdlram_persistent. Changing a specific value in the
persistent array is equivalent to writing to the RAM. Accessing a specific value in the
array is equivalent to reading from the RAM.

You can implement RAM by using user-defined System object private properties in the
same way.

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-14

%#codegen

function data_out = mlhdlc_hdlram_persistent(data_in)

persistent hRam;

if isempty(hRam)

 hRam = zeros(128,1);

end

% read address counter

persistent rdAddrCtr;

if isempty(rdAddrCtr)

 rdAddrCtr = 1;

end

% ring counter length

ringCtrLength = 10;

ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data_in;

%ramWriteEnable = true;

ramReadAddr = rdAddrCtr;

% execute single step of RAM

hRam(ramWriteAddr)=ramWriteData;

ramRdDout=hRam(ramReadAddr);

rdAddrCtr = rdAddrCtr + 1;

data_out = ramRdDout;

Implement RAM Using hdl.RAM

This example shows a line delay that implements the RAM behavior using hdl.RAM
with the function, mlhdlc_hdlram_sysobj. In this function, the step method of the
hdl.RAM System object reads and writes to specific locations in hRam.

%#codegen

function data_out = mlhdlc_hdlram_sysobj(data_in)

persistent hRam;

if isempty(hRam)

 hRam = hdl.RAM('RAMType', 'Dual port');

end

 Implement RAM Using MATLAB Code

2-15

% read address counter

persistent rdAddrCtr;

if isempty(rdAddrCtr)

 rdAddrCtr = 0;

end

% ring counter length

ringCtrLength = 10;

ramWriteAddr = rdAddrCtr + ringCtrLength;

ramWriteData = data_in;

ramWriteEnable = true;

ramReadAddr = rdAddrCtr;

% execute single step of RAM

[~, ramRdDout] = step(hRam, ramWriteData, ramWriteAddr, ramWriteEnable, ramReadAddr);

rdAddrCtr = rdAddrCtr + 1;

data_out = ramRdDout;

hdl.RAM Restrictions for Code Generation

Code generation from hdl.RAM has the same restrictions as code generation from
other System objects. For details, see “Limitations of HDL Code Generation for System
Objects”.

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-16

For-Loop Best Practices for HDL Code Generation
In this section...

“MATLAB Loops” on page 2-16
“Monotonically Increasing Loop Counters” on page 2-16
“Persistent Variables in Loops” on page 2-17
“Persistent Arrays in Loops” on page 2-17

MATLAB Loops

Some best practices for using loops in MATLAB code for HDL code generation are:

• Use monotonically increasing loop counters, with increments of 1, to minimize the
amount of hardware generated in the HDL code.

• If you want to use the loop streaming optimization:

• When assigning new values to persistent variables inside a loop, do not use
other persistent variables on the right side of the assignment. Instead, use an
intermediate variable.

• If a loop modifies any elements in a persistent array, the loop should modify all of
the elements in the persistent array.

Monotonically Increasing Loop Counters

By using monotonically increasing loop counters with increments of 1, you can reduce the
amount of hardware in the generated HDL code. The following loop is an example of a
monotonically increasing loop counter with increments of 1.

a=1;

for i=1:10

 a=a+1;

end

If a loop counter increases by an increment other than 1, the generated HDL code can
require additional adders. Due to this additional hardware, do not use the following type
of loop.

a=1;

for i=1:2:10

 a=a+1;

 For-Loop Best Practices for HDL Code Generation

2-17

end

If a loop counter decreases, the generated HDL code can require additional adders. Due
to this additional hardware, do not use the following type of loop.

a=1;

for i=10:-1:1

 a=a+1;

end

Persistent Variables in Loops

If a loop contains multiple persistent variables, when you assign values to persistent
variables, use intermediate variables that are not persistent on the right side of the
assignment. This practice makes dependencies clear to the compiler and assists internal
optimizations during the HDL code generation process. If you want to use the loop
streaming optimization to reduce the amount of generated hardware, this practice is
recommended.

In the following example, var1 and var2 are persistent variables. var1 is used on the
right side of the assignment. Because a persistent variable is on the right side of an
assignment, do not use this type of loop:

for i=1:10

 var1 = 1 + i;

 var2 = var1 * 2;

end

Instead of using var1 on the right side of the assignment, use an intermediate variable
that is not persistent. This example demonstrates this with the intermediate variable
var_intermediate.

for i=1:10

 var_intermediate = 1 + i;

 var1 = var_intermediate;

 var2 = var_intermediate * 2;

end

Persistent Arrays in Loops

If a loop modifies elements in a persistent array, make sure that the loop modifies all
of the elements in the persistent array. If all elements of the persistent array are not
modified within the loop, HDL Coder cannot perform the loop streaming optimization.

2 MATLAB Best Practices and Design Patterns for HDL Code Generation

2-18

In the following example, a is a persistent array. The first element is modified outside of
the loop. Do not use this type of loop.

for i=2:10

 a(i)=1+i;

 end

 a(1)=24;

Rather than modifying the first element outside the loop, modify all of the elements
inside the loop.

for i=1:10

 if i==1

 a(i)=24;

 else

 a(i)=1+i;

 end

end

3

Fixed-Point Conversion

• “Floating-Point to Fixed-Point Conversion” on page 3-2
• “Fixed-Point Type Conversion and Refinement” on page 3-16
• “Working with Generated Fixed-Point Files” on page 3-26
• “Specify Type Proposal Options” on page 3-33
• “Log Data for Histogram” on page 3-37
• “Automated Fixed-Point Conversion” on page 3-40
• “Custom Plot Functions” on page 3-59
• “Visualize Differences Between Floating-Point and Fixed-Point Results” on page

3-61
• “Inspecting Data Using the Simulation Data Inspector” on page 3-67
• “Enable Plotting Using the Simulation Data Inspector” on page 3-70
• “Replacing Functions Using Lookup Table Approximations” on page 3-72
• “Replace a Custom Function with a Lookup Table” on page 3-73
• “Replace the exp Function with a Lookup Table” on page 3-84
• “Data Type Issues in Generated Code” on page 3-94

3 Fixed-Point Conversion

3-2

Floating-Point to Fixed-Point Conversion

This example shows how to start with a floating-point design in MATLAB, iteratively
converge on an efficient fixed-point design in MATLAB, and verify the numerical
accuracy of the generated fixed-point design.

Signal processing applications for reconfigurable platforms require algorithms that
are typically specified using floating-point operations. However, for power, cost, and
performance reasons, they are usually implemented with fixed-point operations either in
software for DSP cores or as special-purpose hardware in FPGAs. Fixed-point conversion
can be very challenging and time-consuming, typically demanding 25 to 50 percent of the
total design and implementation time. Automated tools can simplify and accelerate the
conversion process.

For software implementations, the aim is to define an optimized fixed-point specification
which minimizes the code size and the execution time for a given computation accuracy
constraint. This optimization is achieved through the modification of the binary point
location (for scaling) and the selection of the data word length according to the different
data types supported by the target processor.

For hardware implementations, the complete architecture can be optimized. An efficient
implementation will minimize both the area used and the power consumption. Thus, the
conversion process goal typically is focused around minimizing the operator word length.

The floating-point to fixed-point workflow is currently integrated in the HDL Workflow
Advisor that you have been introduced to in the tutorial “Getting Started with MATLAB
to HDL Workflow”.

Introduction

The floating-point to fixed-point conversion workflow in HDL Coder™ includes the
following steps:

1 Verify that the floating-point design is compatible with code generation.
2 Compute fixed-point types based on the simulation of the testbench.
3 Generate readable and traceable fixed-point MATLAB code by applying proposed

types.
4 Verify the generated fixed-point design.
5 Compare the numerical accuracy of the generated fixed-point code with the original

floating point code.

 Floating-Point to Fixed-Point Conversion

3-3

MATLAB Design

The MATLAB code used in this example is a simple second-order direct-form 2
transposed filter. This example also contains a MATLAB testbench that exercises the
filter.

design_name = 'mlhdlc_df2t_filter';

testbench_name = 'mlhdlc_df2t_filter_tb';

Examine the MATLAB design.

type(design_name);

%#codegen

function y = mlhdlc_df2t_filter(x)

persistent z;

if isempty(z)

 % Filter states as a column vector

 z = zeros(2,1);

end

% Filter coefficients as constants

b = [0.29290771484375 0.585784912109375 0.292907714843750];

a = [1.0 0.0 0.171600341796875];

y = b(1)*x + z(1);

z(1) = (b(2)*x + z(2)) - a(2) * y;

z(2) = b(3)*x - a(3) * y;

end

For the floating-point to fixed-point workflow, it is desirable to have a complete
testbench. The quality of the proposed fixed-point data types depends on how well the
testbench covers the dynamic range of the design with the desired accuracy.

For more details on the requirements for the floating-point design and the testbench,
refer to the 'Floating-Point Design Structure' structure section of the “Working with
Generated Fixed-Point Files” tutorial.

type(testbench_name);

3 Fixed-Point Conversion

3-4

Fs = 256; % Sampling frequency

Ts = 1/Fs; % Sample time

t = 0:Ts:1-Ts; % Time vector from 0 to 1 second

f1 = Fs/2; % Target frequency of chirp set to Nyquist

in = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

out = zeros(size(in)); % Output the same size as the input

for ii=1:length(in)

 out(ii) = mlhdlc_df2t_filter(in(ii));

end

% Plot

figure('Name', [mfilename, '_plot']);

subplot(2,1,1);

plot(in);

xlabel('Time')

ylabel('Amplitude')

title('Input Signal (with Noise)')

subplot(2,1,2);

plot(out);

xlabel('Time')

ylabel('Amplitude')

title('Output Signal (filtered)')

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix_prj'];

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

 Floating-Point to Fixed-Point Conversion

3-5

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc_df2t_filter_tb

Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new flt2fix_project

Next, add the file 'mlhdlc_filter.m' to the project as the MATLAB Function and
'mlhdlc_filter_tb.m' as the MATLAB Test Bench.

3 Fixed-Point Conversion

3-6

You can refer to “Getting Started with MATLAB to HDL Workflow” tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Fixed-Point Code Generation Workflow

The floating-point to fixed-point conversion workflow allows you to:

• Verify that the floating-point design is code generation compliant
• Propose fixed-point types based on simulation data and word length settings
• Allow the user to manually adjust the proposed fixed-point types
• Validate the proposed fixed-point types
• Verify that the generated fixed-point MATLAB code has the desired numeric accuracy

Step 1: Launch Workflow Advisor

1 Click on the Workflow Advisor button to launch the HDL Workflow Advisor.
2 Choose 'Convert to fixed-point at build time' for the option 'Fixed-point conversion'.

 Floating-Point to Fixed-Point Conversion

3-7

Step 2: Define Input Types

In this step you can define input types manually or by specifying and running the
testbench.

1 Click 'Run' to execute this step.

After simulation notice that the input variable 'x' is defined as scalar double 'double(1x1)'

Step 3: Run Simulation

1 Click on the 'Fixed-Point Conversion' step.

The design is compiled with the input types defined in the previous step and after the
compilation is successful the variable table shows inferred types for all the functions in
the design.

3 Fixed-Point Conversion

3-8

In this step, the original design is instrumented so that the minimum and maximum
values for all variables in the design are collected during simulation.

1 Click the 'Run Simulation' step.

Notice that the 'Sim Min' and 'Sim Max' table is now populated with simulation ranges.
Based on default wordlength settings fixed-point types are proposed.

 Floating-Point to Fixed-Point Conversion

3-9

At this stage, based on computed simulation ranges for all variables, you can compute:

• Fraction lengths for a given fixed word length setting, or
• Word lengths for a given fixed fraction length setting.

The type table contains the following information for each variable existing in the
floating-point MATLAB design, organized by function:

• Sim Min: The minimum value assigned to the variable during simulation.
• Sim Max: The maximum value assigned to the variable during simulation.
• Whole Number: Whether all values assigned during simulation are integers.

The type proposal step uses the above information and combines it with the user-
specified word length settings to propose a fixed-point type for each variable.

3 Fixed-Point Conversion

3-10

You can also enable the 'Log histogram data' option under 'Run simulation' button to
enable logging of histogram data.

The histogram view concisely gives information about dynamic range of the simulation
data for a variable. The x-axis correspond to bit weights and y-axis represents number
of occurances. The proposed numeric type information is overlaid on top of this graph
and is editable. Moving the bounding white box left or right changes the position of
binary point. Moving the right or left edges correspondingly change fraction length or
wordlength. All the changes made to the proposed type are saved in the project.

Step 4: Validate types

In this step, the fixed-point types from the previous step are used to generate a fixed-
point MATLAB design from the original floating-point implementation.

1 Click on the 'Validate Types' button.

 Floating-Point to Fixed-Point Conversion

3-11

The generated code and other conversion artifacts are available via hyperlinks in the
output window. The fixed-point types are explicitly shown in the generated MATLAB
code.

3 Fixed-Point Conversion

3-12

 Floating-Point to Fixed-Point Conversion

3-13

Step 5: Test Numerics

1 Click on the 'Test Numerics' step.

In this step, the generated fixed-point code is executed using MATLAB Coder.

If you enable the 'Log all inputs and outputs for comparison plots' option on the 'Test
Numerics' pane, an additional plot is generated for each scalar output that shows the
floating point and fixed point results, as well as the difference between the two. For non-
scalar outputs, only the error information is shown.

3 Fixed-Point Conversion

3-14

Step 6: Iterate on the Results

If the numerical results do not meet your desired accuracy after fixed-point simulation,
you can return to the 'Propose Fixed-Point Types' step in the Workflow Advisor. Adjust
the word length settings or individually modify types as desired, and repeat the rest of
the steps in the workflow until you achieve your desired results.

 Floating-Point to Fixed-Point Conversion

3-15

You can refer to the “Fixed-Point Type Conversion and Refinement” example for more
details on how to iterate and refine the numerics of the algorithm in the generated fixed-
point code.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix_prj'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

3 Fixed-Point Conversion

3-16

Fixed-Point Type Conversion and Refinement

This example shows how to achieve your desired numerical accuracy when converting
fixed-point MATLAB® code to floating-point code using the HDL Workflow Advisor.

Introduction

The floating-point to fixed-point conversion workflow in HDL Coder™ includes the
following steps:

1 Verify the floating-point design is compatible for code generation.
2 Compute fixed-point types based on the simulation of the testbench.
3 Generate readable and traceable fixed-point MATLAB® code.
4 Verify the generated fixed-point design.

This tutorial uses two examples of Kalman filter suitable for C and HDL code generation
to illustrate some key aspects of fixed-point conversion workflow, specifically steps 2 and
3 in the above list.

MATLAB Design

The MATLAB code used in this example implements a simple Kalman filter. This
example also contains a MATLAB testbench that exercises the filter.

Kalman filter implementation suitable for C code generation

%design_name = 'mlhdlc_kalman_c';

%testbench_name = 'mlhdlc_kalman_c_tb';

%

% # MATLAB Design: <matlab:edit('mlhdlc_kalman_c') mlhdlc_kalman_c>

% # MATLAB testbench: <matlab:edit('mlhdlc_kalman_c_tb') mlhdlc_kalman_c_tb>

%

Kalman filter implementation suitable for HDL code generation

design_name = 'mlhdlc_kalman_hdl';

testbench_name = 'mlhdlc_kalman_hdl_tb';

%

% # MATLAB Design: <matlab:edit('mlhdlc_kalman_hdl') mlhdlc_kalman_hdl>

% # MATLAB testbench: <matlab:edit('mlhdlc_kalman_hdl_tb') mlhdlc_kalman_hdl_tb>

%

 Fixed-Point Type Conversion and Refinement

3-17

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix'];

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure there are
no runtime errors.

mlhdlc_kalman_c_tb

Running --------> mlhdlc_kalman_c_tb

Current plot held

Current plot released

3 Fixed-Point Conversion

3-18

Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new flt2fix_project

Next, add the file 'mlhdlc_kalman_c.m' to the project as the MATLAB Function and
'mlhdlc_kalman_c_tb.m' as the MATLAB Test Bench.

You can refer to “Getting Started with MATLAB to HDL Workflow” tutorial for a more
complete tutorial on creating and populating HDL Coder projects.

Fixed-Point Code Generation Workflow

 Fixed-Point Type Conversion and Refinement

3-19

Perform the following tasks before moving on to the fixed-point type proposal step:

1 Click the 'Workflow Advisor' button to launch the HDL Workflow Advisor.
2 Choose 'Convert to fixed-point at build time' for the 'Fixed-point conversion' option.
3 Click 'Run' button to define input types for the design from the testbench.
4 Select the 'Fixed-Point Conversion' workflow step.
5 Click 'Run Simulation' to execute the instrumented floating-point simulation.

Refer to “Floating-Point to Fixed-Point Conversion” for a more complete tutorial on these
steps.

Determine the Initial Fixed Point Types

After instrumented floating-point simulation completes, you will see 'Fixed-Point Types
are proposed' based on the simulation results.

At this stage of the conversion proposes fixed-point types for each variable in the design
based on the recorded min/max values of the floating point variables and user input.

At this point, for all variables, you can (re)compute and propose:

• Fraction lengths for a given fixed word length setting, or
• Word lengths for a given fixed fraction length setting.

Choose the Word Length Setting

When you are starting with a floating-point design and going through the floating-point
to fixed-point conversion for the first time, it is a good practice to start by specifying a
'Default Word Length' setting based on the largest dynamic range of all the variables in
the design.

In this example, we start with a default word length of 14 and run the 'Propose Fixed-
Point Types' step.

3 Fixed-Point Conversion

3-20

Explore the Proposed Fixed-Point Type Table

The type table contains the following information for each variable, organized by
function, existing in the floating-point MATLAB design:

• Sim Min: The minimum value assigned to the variable during simulation.
• Sim Max: The maximum value assigned to the variable during simulation.
• Whole Number: Whether all values assigned during simulation are integer.

The type proposal step uses the above information and combines it with the user-
specified word length settings to propose a fixed-point type for each variable.

 Fixed-Point Type Conversion and Refinement

3-21

You can also use 'Compute Derived Range Analysis' to compute derived ranges and that
is covered in detail in this tutorial “Computing Derived Ranges in fixed-point conversion”

Interpret the Proposed Numeric Types for Variables

Based on the simulation range (min & max) values and the default word length setting, a
numeric type is proposed for each variable.

The following table shows numeric type proposals for a 'Default word length' of 14 bits.

Examine the types proposed in the above table for variables instrumented in the top-level
design.

Floating-Point Range for variable 'B':

• Simulation Info: SimMin: 0, SimMax: 896.74.., Whole Number: No
• Type Proposed: numerictype(0,14,4) (Signedness: Unsigned, WordLength: 14,

FractionLength: 4)

3 Fixed-Point Conversion

3-22

The floating-point range:

• Has the same number of bits as the 'Default word length'.
• Uses the minimum number of bits to completely represent the range.
• Uses the rest of the bits to represent the precision.

Integer Range for variable 'A':

• Simulation Info: SimMin: 0, SimMax: 1, Whole Number: Yes
• Type Proposed: numerictype(0,1,0) (Signedness: Unsigned, WordLength: 1,

FractionLength: 0)

The integer range:

• Has the minimum number of bits to represent the whole integer range.
• Has no fractional bits.

All the information in the table is editable, persists across iterations, and is saved with
your code generation project.

Generate Fixed-Point Code and Verify the Generated Code

Based on the numeric types proposed for a default word length of 14, continue with fixed-
point code generation and verification steps and observe the plots.

1 Click on 'Validate Types' to apply computed fixed-point types.
2 Next choose the option 'Log inputs and outputs for comparison plots' and then click

on the 'Test Numerics' to rerun the testbench on the fixed-point code.

 Fixed-Point Type Conversion and Refinement

3-23

Having chosen comparison plots option you will see additional plots that compare the
floating and fixed point simulation results for each output variable.

Examine the error graph for each output variable. It is very high for this particular
design.

Iterate on the Results

One way to reduce the error is to increase 'Default word length' and repeat the fixed-
point conversion.

3 Fixed-Point Conversion

3-24

In this example design, when a word length of 14 bits is chosen there is a lot of
truncation error when representing the precision. More bits are required to the right of
the binary point to reduce the truncation errors.

Let us now increase the default word length to 22 bits and repeat the type proposal and
validation steps.

1 Select a 'Default word length' of 22.

Changing default word length automatically triggers the type proposal step and new
fixed-point types are proposed based on the new word length setting. Also notice that
type validation needs to be rerun and numerics need to be verified again.

1 Click on 'Validate Types'.
2 Click on 'Test Numerics' to rerun the testbench on the fixed-point code.

Once these steps are complete, re-examine the comparison plots and notice that the error
is now roughly three orders of magnitude smaller.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix'];

clear mex;

cd (mlhdlc_demo_dir);

 Fixed-Point Type Conversion and Refinement

3-25

rmdir(mlhdlc_temp_dir, 's');

3 Fixed-Point Conversion

3-26

Working with Generated Fixed-Point Files

This example shows how to work with the files generated during floating-point to fixed-
point conversion.

Introduction

This tutorial uses a simple filter implemented in floating-point and an associated
testbench to illustrate the file structure of the generated fixed-point code.

design_name = 'mlhdlc_filter';

testbench_name = 'mlhdlc_filter_tb';

MATLAB® Code

1 MATLAB Design: mlhdlc_filter
2 MATLAB testbench: mlhdlc_filter_tb

Create a New Folder and Copy Relevant Files

Executing the following lines of code copies the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix'];

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure there are
no runtime errors.

mlhdlc_filter_tb

 Working with Generated Fixed-Point Files

3-27

3 Fixed-Point Conversion

3-28

Create a New HDL Coder™ Project

To create a new project, enter the following command:

coder -hdlcoder -new flt2fix_project

Next, add the file 'mlhdlc_filter' to the project as the MATLAB Function and
'mlhdlc_filter_tb' as the MATLAB Test Bench.

You can refer to the “Getting Started with MATLAB to HDL Workflow” tutorial for a
more complete tutorial on creating and populating MATLAB HDL Coder projects.

Fixed-Point Code Generation Workflow

Perform the following tasks in preparation for the fixed-point code generation step:

 Working with Generated Fixed-Point Files

3-29

1 Click the Advisor button to launch the Workflow Advisor.
2 Choose 'Yes' for the option 'Design needs conversion to fixed-point'.
3 Right-click the 'Propose Fixed-Point Types' step.
4 Choose 'Run to Selected Task' to execute the instrumented floating-point simulation.

Refer to the “Floating-Point to Fixed-Point Conversion” tutorial for a more complete
description of these steps.

Floating-Point Design Structure

The original floating-point design and testbench have the following relationship.

For floating-point to fixed-point conversion, the following requirements apply to the
original design and the testbench:

• The testbench 'mlhdlc_filter_tb.m' (1) must be a script or a function with no inputs.
• The design 'mlhdlc_filter.m' (2) must be a function.
• There must be at least one call to the design from the testbench. All call sites

contribute when determining the proposed fixed-point types.
• Both the design and testbench can call other sub-functions within the file or other

functions on the MATLAB path. Functions that exist within matlab/toolbox are not
converted to fixed-point.

3 Fixed-Point Conversion

3-30

In the current example, the MATLAB testbench 'mlhdlc_filter_tb' has a single call to the
design function 'mlhdlc_filter'. The testbench calls the design with floating-point inputs
and accumulates the floating-point results for plotting.

Validate Types

During the type validation step, fixed-point code is generated for this design and
complied to verify that there are no errors when applying the types. The output files will
have the following structure.

The following steps are performed during fixed-point type validation process:

1 The design file 'mlhdlc_filter.m' is converted to fixed-point to generates fixed-point
MATLAB code, 'mlhdlc_filter_FixPt.m' (3).

2 All user-written functions called in the floating-point design are converted to fixed-
point and included in the generated design file.

3 A new design wrapper file is created, called 'mlhdlc_filter_wrapper_FixPt.m' (2). This
file converts the floating-point data values supplied by the testbench to the fixed-
point types determined for the design inputs during the conversion step. These fixed-
point values are fed into the converted fixed-point design, 'mlhdlc_filter_FixPt.m'.

4 'mlhdlc_filter_FixPt.m' will be used for HDL code generation.

 Working with Generated Fixed-Point Files

3-31

5 All the generated fixed-point files are stored in the output directory 'codegen/filter/
fixpt'.

Click the links to the generated code in the Workflow Advisor log window to examine the
generated fixed-point design, wrapper, and test bench.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_flt2fix'];

clear mex;

3 Fixed-Point Conversion

3-32

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

 Specify Type Proposal Options

3-33

Specify Type Proposal Options
Basic Type Proposal Settings Values Description

Propose fraction lengths for
specified word length

Use the specified word
length for data type
proposals and propose the
minimum fraction lengths to
avoid overflows.

Fixed-point type proposal
mode

Propose word lengths for
specified fraction length
(default)

Use the specified fraction
length for data type
proposals and propose the
minimum word lengths to
avoid overflows.

Default word length 14 (default) Default word length to
use when Fixed point
type proposal mode is
set to Propose fraction
lengths for specified

word lengths

Default fraction length 4 (default) Default fraction length to use
when Fixed point type
proposal mode is set to
Propose word lengths

for specified fraction

lengths

Advanced Type Proposal Settings Values Description

ignore simulation
ranges

Propose data types based on
derived ranges.

ignore derived
ranges

Propose data types based on
simulation ranges.

When proposing types

Note: Manually-entered static ranges
always take precedence over simulation
ranges. use all collected data

(default)
Propose data types based on both
simulation and derived ranges.

Propose target container types Yes Propose data type with the smallest
word length that can represent the
range and is suitable for C code
generation (8,16,32, 64 …). For

3 Fixed-Point Conversion

3-34

Advanced Type Proposal Settings Values Description

example, for a variable with range
[0..7], propose a word length of 8
rather than 3.

No (default) Propose data types with the
minimum word length needed to
represent the value.

No Do not use integer scaling for
variables that were whole numbers
during simulation.

Optimize whole numbers

Yes (default) Use integer scaling for variables
that were whole numbers during
simulation.

Automatic (default) Proposes signed and unsigned
data types depending on the range
information for each variable.

Signed Propose signed data types.

Signedness

Unsigned Propose unsigned data types.
Safety margin for sim min/max (%) 0 (default) Specify safety factor for simulation

minimum and maximum values.

The simulation minimum and
maximum values are adjusted
by the percentage designated by
this parameter, allowing you to
specify a range different from that
obtained from the simulation run.
For example, a value of 55 specifies
that you want a range at least
55 percent larger. A value of -15
specifies that a range up to 15
percent smaller is acceptable.

fimath Settings Values Description

CeilingRounding method
Convergent

Specify the fimath
properties for the generated
fixed-point data types.

 Specify Type Proposal Options

3-35

fimath Settings Values Description

Floor (default)
Nearest
Round
Zero
SaturateOverflow action
Wrap (default)
FullPrecision (default)
KeepLSB
KeepMSB

Product mode

SpecifyPrecision
FullPrecision (default)
KeepLSB
KeepMSB

Sum mode

SpecifyPrecision

The default fixed-point math
properties use the Floor
rounding and Wrap overflow.
These settings generate
the most efficient code but
might cause problems with
overflow.

After code generation, if
required, modify these
settings to optimize the
generated code, or example,
avoid overflow or eliminate
bias, and then rerun the
verification.

Product word length 32 (default)|any positive
integer

Word length, in bits, of the
product data type

Sum word length 32 (default)|any positive
integer

Word length, in bits, of the
sum data type

Generated File Settings Value Description

Generated fixed-point file
name suffix

_fixpt (default) Specify the suffix to add to
the generated fixed-point file
names.

Plotting and Reporting
Settings

Values Description

Custom plot function Empty string Specify the name of a custom
plot function to use for
comparison plots.

Plot with Simulation Data
Inspector

No (default)

3 Fixed-Point Conversion

3-36

Plotting and Reporting
Settings

Values Description

Yes Specify whether to use the
Simulation Data Inspector
for comparison plots.

No (default)Highlight potential data
type issues Yes

Specify whether to highlight
potential data types in the
generated html report. If
this option is turned on, the
report highlights single-
precision, double-precision,
and expensive fixed-point
operation usage in your
MATLAB code.

 Log Data for Histogram

3-37

Log Data for Histogram

To log data for histograms:

1 In the Fixed-Point Conversion window, click Run Simulation and select Log data
for histogram, and then click the Run Simulation button.

The simulation runs and the simulation minimum and maximum ranges are
displayed on the Variables tab. Using the simulation range data, the software
proposes fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column.

2 To view a histogram for a variable, click the variable’s Proposed Type field.

3 Fixed-Point Conversion

3-38

3 You can view the effect of changing the proposed data types by:

• Selecting and dragging the white bounding box in the histogram window. This
action does not change the word length of the proposed data type, but modifies

 Log Data for Histogram

3-39

the position of the binary point within the word so that the fraction length of the
proposed data type changes.

• Selecting and dragging the left edge of the bounding box to increase or decrease
the word length. This action does not change the fraction length or the position of
the binary point.

• Selecting and dragging the right edge to increase or decrease the fraction length
of the proposed data type. This action does not change the position of the binary
point. The word length changes to accommodate the fraction length.

• Selecting or clearing Signed. Clear Signed to ignore negative values.

Before committing changes, you can revert to the types proposed by the automatic

conversion by clicking .

3 Fixed-Point Conversion

3-40

Automated Fixed-Point Conversion
In this section...

“License Requirements” on page 3-40
“Automated Fixed-Point Conversion Capabilities” on page 3-40
“Code Coverage” on page 3-42
“Proposing Data Types” on page 3-45
“Locking Proposed Data Types” on page 3-47
“Viewing Functions” on page 3-47
“Viewing Variables” on page 3-48
“Histogram” on page 3-54
“Function Replacements” on page 3-56
“Validating Types” on page 3-57
“Testing Numerics” on page 3-57
“Detecting Overflows” on page 3-57

License Requirements

Fixed-point conversion requires the following licenses:

• Fixed-Point Designer
• MATLAB Coder™

Automated Fixed-Point Conversion Capabilities

You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point
Conversion tool in HDL Coder projects. You can choose to propose data types based on
simulation range data, derived (also known as static) range data, or both.

You can manually enter static ranges. These manually-entered ranges take precedence
over simulation ranges and the tool uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the tool cannot change it. For more
information, see “Locking Proposed Data Types” on page 3-47.

For a list of supported MATLAB features and functions, see “MATLAB Language
Features Supported for Automated Fixed-Point Conversion”.

 Automated Fixed-Point Conversion

3-41

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your algorithm
using code coverage results.

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test bench with the fixed-point types applied.

3 Fixed-Point Conversion

3-42

• View a histogram of bits used by each variable.
• Detect overflows.

Code Coverage

By default, the Fixed-Point Conversion tool shows code coverage results. Your test files
should exercise the algorithm over its full operating range so that the simulation ranges
are accurate. The quality of the proposed fixed-point data types depends on how well the
test files cover the operating range of the algorithm with the accuracy that you want.
Reviewing code coverage results helps you verify that your test file is exercising the
algorithm adequately. If the code coverage is inadequate, modify the test file or add
more test files to increase coverage. If you simulate multiple test files in one run, the tool
displays cumulative coverage. However, if you specify multiple test files but run them
one at a time, the tool displays the coverage of the file that ran last.

Code coverage is on by default. Turn it off only after you have verified that you have
adequate test file coverage. Turning off code coverage might speed up simulation. To turn
off code coverage, in the Fixed-Point Conversion tool:

1 Click Run Simulation.
2 Clear Show code coverage.

The tool covers basic MATLAB control constructs and shows statement coverage for basic
blocks of code. The tool displays a color-coded coverage bar to the left of the code.

Coverage Bar
Color

How Often Code is Executed During Test File Simulation

Dark green Always
Light green Sometimes
Orange Once
Red Never

 Automated Fixed-Point Conversion

3-43

When you position your cursor over the coverage bar, the color highlighting extends over
the code and the tool displays more information about how often the code is executed.
For MATLAB constructs that affect control flow (if-elseif-else, switch-case, for-continue-
break, return), it displays statement coverage as a percentage coverage for basic blocks
inside these constructs.

3 Fixed-Point Conversion

3-44

To verify that your test file is testing your algorithm over the intended operating range,
review the code coverage results and take action as described in the following table.

Coverage Bar
Color

Action Required

Dark green None
Light green Review percentage coverage and verify that it is reasonable based

on your algorithm. If there are areas of code that you expect to be
executed more frequently, modify your test file or add more test files
to increase coverage.

 Automated Fixed-Point Conversion

3-45

Coverage Bar
Color

Action Required

Orange This is expected behavior for initialization code, for example, the
initialization of persistent variables. For other cases, verify that this
behavior is reasonable for your algorithm. If there are areas of code
that you expect to be executed more frequently, modify your test file or
add more test files to increase coverage.

Red If the code that is not executed is an error condition, this is acceptable
behavior. If the code should be executed, modify the test file or
add another test file to extend coverage. If the code is written
conservatively and has upper and lower boundary limits and you
cannot modify the test file to reach this code, add static minimum and
maximum values (see “Computing Derived Ranges”).

Proposing Data Types

The Fixed-Point Conversion tool proposes fixed-point data types based on computed
ranges and the word length or fraction length setting. The computed ranges are based on
simulation range data, derived range data, or both. If you run a simulation and compute
derived ranges, the conversion tool merges the simulation and derived ranges.

Note: You cannot propose data types based on derived ranges for MATLAB classes.

You can manually enter static ranges. These manually-entered ranges take precedence
over simulation ranges and the tool uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the tool cannot change it. For more
information, see “Locking Proposed Data Types” on page 3-47.

Running a Simulation

When you open the Fixed-Point Conversion tool, the tool generates an instrumented
MEX function for your MATLAB design. If the build completes without errors, the tool
displays compiled information (type, size, complexity) for functions and variables in your
code. To navigate to local functions, click the Functions tab. If build errors occur, the
tool provides error messages that link to the line of code that caused the build issues.
You must address these errors before running a simulation. Use the link to navigate to
the offending line of code in the MATLAB editor and modify the code to fix the issue.

3 Fixed-Point Conversion

3-46

If your code uses functions that are not supported for fixed-point conversion, the tool
displays them on the Function Replacements tab. See “Function Replacements” on
page 3-56.

Before running a simulation, specify the test bench that you want to run. When you run
a simulation, the tool runs the test bench, calling the instrumented MEX function. If
you modify the MATLAB design code, the tool automatically generates an updated MEX
function before running the test bench.

If the test bench runs successfully, the simulation minimum and maximum values and
the proposed types are displayed on the Variables tab. If you manually enter static
ranges for a variable, the manually-entered ranges take precedence over the simulation
ranges. If you manually modify the proposed types by typing or using the histogram, the
data types are locked so that the tool cannot modify them.

If the test bench fails, the errors are displayed on the Simulation Output tab.

The test bench should exercise your algorithm over its full operating range. The quality
of the proposed fixed-point data types depends on how well the test bench covers the
operating range of the algorithm with the desired accuracy.

Optionally, you can select to log data for histograms. After running a simulation, you
can view the histogram for each variable. For more information, see “Histogram” on page
3-54.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to
provide test files that exercise your algorithm over its full operating range. Running such
test files often takes a very long time.

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values or proposed data types for all input variables.
To improve the analysis, enter as much static range information as possible for other
variables. You can manually enter ranges or promote simulation ranges to use as static
ranges. Manually-entered static ranges always take precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to
match this type. Manually-entered data types are locked so that the tool cannot modify
them. The tool uses these data types to calculate the input minimum and maximum
values and to derive ranges for other variables. For more information, see “Locking
Proposed Data Types” on page 3-47.

 Automated Fixed-Point Conversion

3-47

When you select Compute Derived Ranges, the tool runs a derived range analysis to
compute static ranges for variables in your MATLAB algorithm. When the analysis is
complete, the static ranges are displayed on the Variables tab. If the run produces +/-
Inf derived ranges, consider defining ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the
conversion tool performs faster static analysis. The computed ranges might be larger
than necessary. Select this option in cases where the static analysis takes more time than
you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set
a timeout. The tool aborts the analysis when the timeout is reached.

Locking Proposed Data Types

You can lock proposed data types against changes by the Fixed-Point Conversion tool
using one of the following methods:

• Manually setting a proposed data type in the Fixed-Point Conversion tool.
• Right-clicking a type proposed by the tool and selecting Lock computed value.

The tool displays locked data types in bold so that they are easy to identify. You can
unlock a type using one of the following methods:

• Manually overwriting it.
• Right-clicking it and selecting Undo changes. This action unlocks only the selected

type.
• Right-clicking and selecting Undo changes for all variables. This action

unlocks all locked proposed types.

Viewing Functions

You can view a list of functions in your project on the Navigation pane. This list also
includes function specializations and class methods. When you select a function from the
list, the MATLAB code for that function or class method is displayed in the Fixed-Point
Conversion tool code window.

3 Fixed-Point Conversion

3-48

After conversion, the left pane also displays a list of output files including the fixed-
point version of the original algorithm. If your function is not specialized, the conversion
retains the original function name in the fixed-point filename and appends the
fixed-point suffix. For example, the fixed-point version of fun_with_matlab.m is
fun_with_matlab_fixpt.m.

Viewing Variables

The Variables tab provides the following information for each variable in the function
selected in the Navigation pane:

• Type — The original data type of the variable in the MATLAB algorithm.
• Sim Min and Sim Max — The minimum and maximum values assigned to the

variable during simulation.

You can edit the simulation minimum and maximum values. Edited fields are shown
in bold. Editing these fields does not trigger static range analysis, but the tool uses
the edited values in subsequent analyses. You can revert to the types proposed by the
tool.

• Static Min and Static Max — The static minimum and maximum values.

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values for all input variables. To improve the analysis,
enter as much static range information as possible for other variables.

When you compute derived ranges, the Fixed-Point Conversion tool runs a static
analysis to compute static ranges for variables in your code. When the analysis is
complete, the static ranges are displayed. You can edit the computed results. Edited
fields are shown in bold. Editing these fields does not trigger static range analysis,
but the tool uses the edited values in subsequent analyses. You can revert to the types
proposed by the tool.

• Whole Number — Whether all values assigned to the variable during simulation are
integers.

 Automated Fixed-Point Conversion

3-49

The Fixed-Point Conversion tool determines whether a variable is always a whole
number. You can modify this field. Edited fields are shown in bold. Editing these
fields does not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the tool.

• The proposed fixed-point data type for the specified word (or fraction)
length. Proposed data types use the numerictype notation. For example,
numerictype(1,16,12) denotes a signed fixed-point type with a word length of 16
and a fraction length of 12. numerictype(0,16,12) denotes an unsigned fixed-point
type with a word length of 16 and a fraction length of 12.

Because the tool does not apply data types to expressions, it does not display proposed
types for them. Instead, it displays their original data types.

You can also view and edit variable information in the code pane by placing your cursor
over a variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the Variables
tab. The tool highlights occurrences in the code and displays only the variable with the
specified name on the Variables tab.

Viewing Information for MATLAB Classes

The tool displays:

• Code for MATLAB classes and code coverage for class methods in the code window.
Use the Function list in the Navigation bar to select which class or class method to
view.

3 Fixed-Point Conversion

3-50

• Information about MATLAB classes on the Variables tab.

Specializations

If a function is specialized, the tool lists each specialization and numbers them
sequentially. For example, consider a function, dut, that calls subfunctions, foo and
bar, multiple times with different input types.

function y = dut(u, v)

 Automated Fixed-Point Conversion

3-51

tt1 = foo(u);

tt2 = foo([u v]);

tt3 = foo(complex(u,v));

ss1 = bar(u);

ss2 = bar([u v]);

ss3 = bar(complex(u,v));

y = (tt1 + ss1) + sum(tt2 + ss2) + real(tt3) + real(ss3);

end

function y = foo(u)

 y = u * 2;

end

function y = bar(u)

 y = u * 4;

end

3 Fixed-Point Conversion

3-52

If you select a specialization, the app displays only the variables used by the
specialization.

 Automated Fixed-Point Conversion

3-53

In the generated fixed-point code, the number of each fixed-point specialization matches
the number in the Source Code list which makes it easy to trace between the floating-
point and fixed-point versions of your code. For example, the generated fixed-point
function for foo > 1 is named foo_s1.

3 Fixed-Point Conversion

3-54

Histogram

To log data for histograms, in the Fixed-Point Conversion window, click Run
Simulation and select Log data for histogram, and then click the Run Simulation
button.

After simulation, to view the histogram for a variable, on the Variables tab, click the
Proposed Type field for that variable.

The histogram provides the range of the proposed data type and the percentage of
simulation values that the proposed data type covers. The bit weights are displayed along

 Automated Fixed-Point Conversion

3-55

the X-axis, and the percentage of occurrences along the Y-axis. Each bin in the histogram
corresponds to a bit in the binary word. For example, this histogram displays the range
for a variable of type numerictype(1,16,14).

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change the
proposed data type.

3 Fixed-Point Conversion

3-56

• Selecting or clearing Signed.

To revert to the types proposed by the automatic conversion, in the histogram window,

click .

Function Replacements

If your MATLAB code uses functions that do not have fixed-point support, the tool
lists these functions on the Function Replacements tab. You can choose to replace
unsupported functions with a custom function replacement or with a lookup table.

You can add and remove function replacements from this list. If you enter a function
replacements for a function, the replacement function is used when you build the
project. If you do not enter a replacement, the tool uses the type specified in the original
MATLAB code for the function.

 Automated Fixed-Point Conversion

3-57

Note: Using this table, you can replace the names of the functions but you cannot replace
argument patterns.

Validating Types

Selecting Validate Types validates the build using the proposed fixed-point data types.
If the validation is successful, you are ready to test the numerical behavior of the fixed-
point MATLAB algorithm.

If the errors or warnings occur during validation, they are displayed on the Type
Validation Output tab. If errors or warning occur:

• On the Variables tab, inspect the proposed types and manually modified types to
verify that they are valid.

• On the Function Replacements tab, verify that you have provided function
replacements for unsupported functions.

Testing Numerics

After validating the proposed fixed-point data types, select Test Numerics to verify the
behavior of the fixed-point MATLAB algorithm. By default, if you added a test bench
to define inputs or run a simulation, the tool uses this test bench to test numerics. The
tool compares the numerical behavior of the generated fixed-point MATLAB code with
the original floating-point MATLAB code. If you select to log inputs and outputs for
comparison plots, the tool generates an additional plot for each scalar output. This plot
shows the floating-point and fixed-point results and the difference between them. For
non-scalar outputs, only the error information is shown.

If the numerical results do not meet your desired accuracy after fixed-point simulation,
modify fixed-point data type settings and repeat the type validation and numerical
testing steps. You might have to iterate through these steps multiple times to achieve the
desired results.

Detecting Overflows

When testing numerics, selecting Use scaled doubles to detect overflows enables
overflow detection. When this option is selected, the conversion tool runs the simulation
using scaled double versions of the proposed fixed-point types. Because scaled doubles
store their data in double-precision floating-point, they carry out arithmetic in full range.

3 Fixed-Point Conversion

3-58

They also retain their fixed-point settings, so they are able to report when a computation
goes out of the range of the fixed-point type. .

If the tool detects overflows, on its Overflow tab, it provides:

• A list of variables and expressions that overflowed
• Information on how much each variable overflowed
• A link to the variables or expressions in the code window

If your original algorithm uses scaled doubles, the tool also provides overflow information
for these expressions.

See Also

“Detect Overflows”

 Custom Plot Functions

3-59

Custom Plot Functions
The Fixed-Point Conversion tool provides a default time series based plotting function.
The conversion process uses this function at the test numerics step to show the floating-
point and fixed-point results and the difference between them. However, during fixed-
point conversion you might want to visualize the numerical differences in a view that is
more suitable for your application domain. For example, plots that show eye diagrams
and bit error differences are more suitable in the communications domain and histogram
difference plots are more suitable in image processing designs.

You can choose to use a custom plot function at the test numerics step. The Fixed-Point
Conversion tool facilitates custom plotting by providing access to the raw logged input
and output data before and after fixed-point conversion. You supply a custom plotting
function to visualize the differences between the floating-point and fixed-point results. If
you specify a custom plot function, the fixed-point conversion process calls the function
for each input and output variable, passes in the name of the variable and the function
that uses it, and the results of the floating-point and fixed-point simulations.

Your function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.

Use this information to:

• Customize plot headings and axes.
• Choose which variables to plot.
• Generate different error metrics for different output variables.

• A cell array to hold the logged floating-point values for the variable.

This cell array contains values observed during floating-point simulation of the
algorithm during the test numerics phase. You might need to reformat this raw data.

• A cell array to hold the logged values for the variable after fixed-point conversion.

This cell array contains values observed during fixed-point simulation of the
converted design.

For example, function customComparisonPlot(varInfo, floatVarVals,
fixedPtVarVals).

To use a custom plot function, in the Fixed-Point Conversion tool, select Advanced, and
then set Custom plot function to the name of your plot function.

3 Fixed-Point Conversion

3-60

In the programmatic workflow, set the coder.FixptConfig configuration object
PlotFunction property to the name of your plot function. See “Visualize Differences
Between Floating-Point and Fixed-Point Results”.

 Visualize Differences Between Floating-Point and Fixed-Point Results

3-61

Visualize Differences Between Floating-Point and Fixed-Point
Results

This example shows how to configure the codegen function to use a custom plot function
to compare the behavior of the generated fixed-point code against the behavior of the
original floating-point MATLAB code.

By default, when the LogIOForComparisonPlotting option is enabled, the conversion
process uses a time series based plotting function to show the floating-point and fixed-
point results and the difference between them. However, during fixed-point conversion
you might want to visualize the numerical differences in a view that is more suitable
for your application domain. This example shows how to customize plotting and produce
scatter plots at the test numerics step of the fixed-point conversion.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\custom_plot.
2 Change to the docroot\toolbox\fixpoint\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'fixpoint', 'examples'))

3 Copy the myFilter.m, myFilterTest.m, plotDiff.m, and filterData.mat files
to your local working folder.

Type Name Description

Function code myFilter.m Entry-point MATLAB function

3 Fixed-Point Conversion

3-62

Type Name Description

Test file myFilterTest.m MATLAB script that tests
myFilter.m

Plotting function plotDiff.m Custom plot function
MAT-fiile filterData.mat Data to filter.

The myFilter Function

function [y, ho] = myFilter(in)

persistent b h;

if isempty(b)

 b = complex(zeros(1,16));

 h = complex(zeros(1,16));

 h(8) = 1;

end

b = [in, b(1:end-1)];

y = b*h.';

errf = 1-sqrt(real(y)*real(y) + imag(y)*imag(y));

update = 0.001*conj(b)*y*errf;

h = h + update;

h(8) = 1;

ho = h;

end

The myFilterTest File

% load data

data = load('filterData.mat');

d = data.symbols;

for idx = 1:4000

 y = myFilter(d(idx));

end

 The plotDiff Function

3-63

The plotDiff Function
% varInfo - structure with information about the variable. It has the following fields

% i) name

% ii) functionName

% floatVals - cell array of logged original values for the 'varInfo.name' variable

% fixedVals - cell array of logged values for the 'varInfo.name' variable after Fixed-Point conversion.

function plotDiff(varInfo, floatVals, fixedVals)

 varName = varInfo.name;

 fcnName = varInfo.functionName;

 % convert from cell to matrix

 floatVals = cell2mat(floatVals);

 fixedVals = cell2mat(fixedVals);

 % escape the '_'s because plot titles treat these as subscripts

 escapedVarName = regexprep(varName,'_','_');

 escapedFcnName = regexprep(fcnName,'_','_');

 % flatten the values

 flatFloatVals = floatVals(1:end);

 flatFixedVals = fixedVals(1:end);

 % build Titles

 floatTitle = [escapedFcnName ' > ' 'float : ' escapedVarName];

 fixedTitle = [escapedFcnName ' > ' 'fixed : ' escapedVarName];

 data = load('filterData.mat');

 switch varName

 case 'y'

 x_vec = data.symbols;

 figure('Name', 'Comparison plot', 'NumberTitle', 'off');

 % plot floating point values

 y_vec = flatFloatVals;

 subplot(1, 2, 1);

 plotScatter(x_vec, y_vec, 100, floatTitle);

 % plot fixed point values

 y_vec = flatFixedVals;

 subplot(1, 2, 2);

 plotScatter(x_vec, y_vec, 100, fixedTitle);

3 Fixed-Point Conversion

3-64

 otherwise

 % Plot only output 'y' for this example, skip the rest

 end

end

function plotScatter(x_vec, y_vec, n, figTitle)

 % plot the last n samples

 x_plot = x_vec(end-n+1:end);

 y_plot = y_vec(end-n+1:end);

 hold on

 scatter(real(x_plot),imag(x_plot), 'bo');

 hold on

 scatter(real(y_plot),imag(y_plot), 'rx');

 title(figTitle);

end

Set Up Configuration Object

1 Create a coder.FixptConfig object.

fxptcfg = coder.config('fixpt');

2 Specify the test file name and custom plot function name. Enable logging and
numerics testing.

fxptcfg.TestBenchName = 'myFilterTest';

fxptcfg.PlotFunction = 'plotDiff';

fxptcfg.TestNumerics = true;

fxptcfg. LogIOForComparisonPlotting = true;

fxptcfg.DefaultWordLength = 16;

Convert to Fixed Point

Convert the floating-point MATLAB function, myFilter, to floating-point MATLAB
code. You do not need to specify input types for the codegen command because it infers
the types from the test file.

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

 The plotDiff Function

3-65

The conversion process generates fixed-point code using a default word length of 16 and
then runs a fixed-point simulation by running the myFilterTest.m function and calling
the fixed-point version of myFilter.m.

Because you selected to log inputs and outputs for comparison plots and to use the
custom plotting function, plotDiff.m, for these plots, the conversion process uses this
function to generate the comparison plot.

3 Fixed-Point Conversion

3-66

The plot shows that the fixed-point results do not closely match the floating-point results.

Increase the word length to 24 and then convert to fixed point again.

fxptcfg.DefaultWordLength = 24;

codegen -args {complex(0, 0)} -float2fixed fxptcfg myFilter

The increased word length improved the results. This time, the plot shows that the fixed-
point results match the floating-point results.

 Inspecting Data Using the Simulation Data Inspector

3-67

Inspecting Data Using the Simulation Data Inspector

In this section...

“What Is the Simulation Data Inspector?” on page 3-67
“Import Logged Data” on page 3-67
“Export Logged Data” on page 3-67
“Group Signals” on page 3-67
“Run Options” on page 3-68
“Create Report” on page 3-68
“Comparison Options” on page 3-68
“Enabling Plotting Using the Simulation Data Inspector” on page 3-68
“Save and Load Simulation Data Inspector Sessions” on page 3-68

What Is the Simulation Data Inspector?

The Simulation Data Inspector allows you to view data logged during the fixed-point
conversion process. You can use it to inspect and compare the inputs and outputs to the
floating-point and fixed-point versions of your algorithm.

For fixed-point conversion, there is no programmatic interface for the Simulation Data
Inspector.

Import Logged Data

Before importing data into the Simulation Data Inspector, you must have previously
logged data to the base workspace or to a MAT-file.

Export Logged Data

The Simulation Data Inspector provides the capability to save data collected by the fixed-
point conversion process to a MAT-file that you can later reload. The format of the MAT-
file is different from the format of a MAT-file created from the base workspace.

Group Signals

3 Fixed-Point Conversion

3-68

You can customize the organization of your logged data in the Simulation Data Inspector
Runs pane. By default, data is first organized by run. You can then organize your data
by logged variable or no hierarchy.

Run Options

You can configure the Simulation Data Inspector to:

• Append New Runs

In the Run Options dialog box, the default is set to add new runs to the bottom of the
run list. To append new runs to the top of the list, select Add new runs to top.

• Specify a Run Naming Rule

To specify run naming rules, in the Simulation Data Inspector toolbar, click Run
Configuration.

Create Report

You can create a report of the runs or comparison plots. Specify the name and location
of the report file. By default, the Simulation Data Inspector overwrites existing files. To
preserve existing reports, select If report exists, increment file name to prevent
overwriting.

Comparison Options

To change how signals are matched when runs are compared, specify the Align by and
Then by parameters and then click OK.

Enabling Plotting Using the Simulation Data Inspector

To enable the Simulation Data Inspector, see “Enable Plotting Using the Simulation
Data Inspector”.

Save and Load Simulation Data Inspector Sessions

If you have data in the Simulation Data Inspector and you want to archive or share the
data to view in the Simulation Data Inspector later, save the Simulation Data Inspector
session. When you save a Simulation Data Inspector session, the MAT-file contains:

 Inspecting Data Using the Simulation Data Inspector

3-69

• All runs, data, and properties from the Runs and Comparisons panes.
• Check box selection state for data in the Runs pane.

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Simulation

1 On the Visualize tab, click Open.
2 Browse, select the MAT-file saved from the Simulation Data Inspector, and click

Open.
3 If data in the session is plotted on multiple subplots, on the Format tab, click

Subplots and select the subplot layout.

3 Fixed-Point Conversion

3-70

Enable Plotting Using the Simulation Data Inspector

In this section...

“From the UI” on page 3-70
“From the Command Line” on page 3-70

From the UI

You can use the Simulation Data Inspector to inspect and compare floating-point and
fixed-point logged input and output data. In the Fixed-Point Conversion tool:

1 Click Advanced.
2 In the Advanced Settings dialog box, set Plot with Simulation Data Inspector to

Yes.
3 At the Test Numerics stage in the conversion process, click Test Numerics, select

Log inputs and outputs for comparison plots, and then click

.

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges”.

From the Command Line

You can use the Simulation Data Inspector to inspect and compare floating-point and
fixed-point logged input and output data. At the MATLAB command line:

1 Create a fixed-point configuration object and configure the test file name.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'dti_test';

2 Select to run the test file to verify the generated fixed-point MATLAB code. Log
inputs and outputs for comparison plotting and select to use the Simulation Data
Inspector to plot the results.

fixptcfg.TestNumerics = true;

fixptcfg.LogIOForComparisonPlotting = true;

 Enable Plotting Using the Simulation Data Inspector

3-71

fixptcfg.PlotWithSimulationDataInspector = true;

3 Generate fixed-point MATLAB code using codegen.

codegen -float2fixed fixptcfg -config cfg dti

For an example, see “Propose Fixed-Point Data Types Based on Derived Ranges”.

3 Fixed-Point Conversion

3-72

Replacing Functions Using Lookup Table Approximations

The Fixed-Point Designer software provides an option to generate lookup table
approximations for continuous and stateless single-input, single-output functions in your
original MATLAB code. These functions must be on the MATLAB path.

You can use this capability to handle functions that are not supported for fixed point
and to replace your own custom functions. The fixed-point conversion process infers
the ranges for the function and then uses an interpolated lookup table to replace the
function. You can control the interpolation method and number of points in the lookup
table. By adjusting these settings, you can tune the behavior of replacement function to
match the behavior of the original function as closely as possible.

The fixed-point conversion process generates one lookup table approximation per call site
of the function that needs replacement.

To use lookup table approximations, see:

• coder.approximation

• “Replace the exp Function with a Lookup Table”
• “Replace a Custom Function with a Lookup Table”

 Replace a Custom Function with a Lookup Table

3-73

Replace a Custom Function with a Lookup Table

In this section...

“From the UI” on page 3-73
“From the Command Line” on page 3-81

From the UI

This example shows how to replace a custom function with a lookup table approximation
function using the Fixed-Point Conversion tool.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn which is the function that you want to
replace.

function y = custom_fcn(x)

 y = 1./(1+exp(-x));

end

2 Create a wrapper function that calls custom_fcn.

function y = call_custom_fcn(x)

 y = custom_fcn(x);

end

3 Create a test file, custom_test, that uses call_custom_fcn.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = call_custom_fcn(x(itr));

end

plot(x, y);

Create and Set Up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this example.

3 Fixed-Point Conversion

3-74

2 On the MATLAB Apps tab, select MATLAB Coder and then, in the MATLAB
Coder Project dialog box, set Name to custom_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new custom_project.prj

By default, the project opens in the MATLAB workspace.
3 On the project Overview tab, click the Add files link. Browse to the file

call_custom_fcn.m and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.
2 In the Autodefine Input Types dialog box, add custom_test as a test file and then

click Run.

The test file runs and plots the output.

 Replace a Custom Function with a Lookup Table

3-75

3 MATLAB Coder determines from the test file that x is a scalar double.
4 In the Autodefine Input Types dialog box, click Use These Types.

MATLAB Coder sets the type of x to double(1x1).

3 Fixed-Point Conversion

3-76

Fixed-Point Conversion

1 On the project Overview tab Fixed-Point Conversion pane, select Convert to
fixed-point at build time.

The project indicates that you must first define the fixed-point data types.
2 In the Fixed-Point Conversion pane, click Define and validate fixed-point

types.

The Fixed-Point Conversion window opens and the tool generates an instrumented
MEX function for your entry-point MATLAB function. After generating the MEX
function, the tool displays compiled information — type, size, and complexity — for
variables in your code.

3 Select the Function Replacements tab.

 Replace a Custom Function with a Lookup Table

3-77

4 Enter the name of the function to replace, custom_fcn, select Lookup Table, and
then click +.

3 Fixed-Point Conversion

3-78

The tool adds custom_fcn to the list of functions that it will replace with a Lookup
Table. By default, the lookup table uses linear interpolation, 1000 points, and the
design minimum and maximum values that the app detects by either running a
simulation or computing derived ranges.

 Replace a Custom Function with a Lookup Table

3-79

5 Click Run Simulation, select Log data for histogram and verify that the
custom_test file is selected as a test file to run.

6 Click the Run Simulation button.

The simulation runs and the tool displays simulation minimum and maximum
ranges on the Variables tab. Using the simulation range data, the software
proposes fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column. The Validate Types
option is now enabled.

7 Examine the proposed types and verify that they cover the full simulation range.
To view logged histogram data for a variable, click its Proposed Type field. The

3 Fixed-Point Conversion

3-80

histogram provides range information and the percentage of simulation range
covered by the proposed data type.

8 To validate the build using the proposed types, click Validate Types.

The software validates the proposed types and generates a fixed-point code,
call_custom_fcn_fixpt.

9 On the Type Validation Output tab, click the call_custom_fcn_fixpt link to view
the generated fixed-point code.

The conversion process generates a lookup table approximation, custom_fcn1, for
the custom_fcn function.

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this
approximation instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(custom_fcn1(x), 0, 16, 16, fm);

end

 Replace a Custom Function with a Lookup Table

3-81

You can now test the generated fixed-point code and compare the results against the
original MATLAB function.

From the Command Line

This example shows how to replace a custom function with a lookup table approximation
function using the programmatic workflow.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB)

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create a MATLAB function, custom_fcn.m. This is the function that you want to
replace.

function y = custom_fcn(x)

 y = 1./(1+exp(-x));

end

Create a wrapper function that calls custom_fcn.m.

function y = call_custom_fcn(x)

 y = custom_fcn(x);

end

Create a test file, custom_test.m, that uses call_custom_fcn.m.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = call_custom_fcn(x(itr));

3 Fixed-Point Conversion

3-82

end

plot(x, y);

Create a function replacement configuration object to approximate custom_fcn. Specify
the function handle of the custom function and set the number of points to use in the
lookup table to 50.

q = coder.approximation('Function','custom_fcn',...

 'CandidateFunction',@custom_fcn, 'NumberOfPoints',50);

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'custom_test';

fixptcfg.TestNumerics = true;

fixptcfg.addApproximation(q);

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg call_custom_fcn

codegen generates fixed-point MATLAB code in call_custom_fcn_fixpt.m.

To view the generated fixed-point code, click the link to call_custom_fcn_fixpt.

The generated code contains a lookup table approximation, custom_fcn1, for the
custom_fcn function. The fixed-point conversion process infers the ranges for the
function and then uses an interpolated lookup table to replace the function. The
lookup table uses 50 points as specified. By default, it uses linear interpolation and the
minimum and maximum values detected by running the test file.

The generated fixed-point function, call_custom_fcn_fixpt, calls this approximation
instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(custom_fcn1(x), 0, 14, 14, fm);

end

 Replace a Custom Function with a Lookup Table

3-83

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not
match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

3 Fixed-Point Conversion

3-84

Replace the exp Function with a Lookup Table

In this section...

“From the UI” on page 3-84
“From the Command Line” on page 3-92

From the UI

This example shows how to replace a custom function with a lookup table approximation
function using the Fixed-Point Conversion tool.

Create Algorithm and Test Files

In a local, writable folder:

1 Create a MATLAB function, custom_fcn which is the function that you want to
replace.

function y = custom_fcn(x)

 y = 1./(1+exp(-x));

end

2 Create a wrapper function that calls custom_fcn.

function y = call_custom_fcn(x)

 y = custom_fcn(x);

end

3 Create a test file, custom_test, that uses call_custom_fcn.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = call_custom_fcn(x(itr));

end

plot(x, y);

Create and Set Up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this example.

 Replace the exp Function with a Lookup Table

3-85

2 On the MATLAB Apps tab, select MATLAB Coder and then, in the MATLAB
Coder Project dialog box, set Name to custom_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new custom_project.prj

By default, the project opens in the MATLAB workspace.
3 On the project Overview tab, click the Add files link. Browse to the file

call_custom_fcn.m and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.
2 In the Autodefine Input Types dialog box, add custom_test as a test file and then

click Run.

The test file runs and plots the output.

3 Fixed-Point Conversion

3-86

3 MATLAB Coder determines from the test file that x is a scalar double.
4 In the Autodefine Input Types dialog box, click Use These Types.

MATLAB Coder sets the type of x to double(1x1).

 Replace the exp Function with a Lookup Table

3-87

Fixed-Point Conversion

1 On the project Overview tab Fixed-Point Conversion pane, select Convert to
fixed-point at build time.

The project indicates that you must first define the fixed-point data types.
2 In the Fixed-Point Conversion pane, click Define and validate fixed-point

types.

The Fixed-Point Conversion window opens and the tool generates an instrumented
MEX function for your entry-point MATLAB function. After generating the MEX
function, the tool displays compiled information — type, size, and complexity — for
variables in your code.

3 Select the Function Replacements tab.

3 Fixed-Point Conversion

3-88

4 Enter the name of the function to replace, custom_fcn, select Lookup Table, and
then click +.

 Replace the exp Function with a Lookup Table

3-89

The tool adds custom_fcn to the list of functions that it will replace with a Lookup
Table. By default, the lookup table uses linear interpolation, 1000 points, and the
design minimum and maximum values that the app detects by either running a
simulation or computing derived ranges.

3 Fixed-Point Conversion

3-90

5 Click Run Simulation, select Log data for histogram and verify that the
custom_test file is selected as a test file to run.

6 Click the Run Simulation button.

The simulation runs and the tool displays simulation minimum and maximum
ranges on the Variables tab. Using the simulation range data, the software
proposes fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column. The Validate Types
option is now enabled.

7 Examine the proposed types and verify that they cover the full simulation range.
To view logged histogram data for a variable, click its Proposed Type field. The

 Replace the exp Function with a Lookup Table

3-91

histogram provides range information and the percentage of simulation range
covered by the proposed data type.

8 To validate the build using the proposed types, click Validate Types.

The software validates the proposed types and generates a fixed-point code,
call_custom_fcn_fixpt.

9 On the Type Validation Output tab, click the call_custom_fcn_fixpt link to view
the generated fixed-point code.

The conversion process generates a lookup table approximation, custom_fcn1, for
the custom_fcn function.

The generated fixed-point function, call_custom_fcn_fixpt.m, calls this
approximation instead of calling custom_fcn.

function y = call_custom_fcn_fixpt(x)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(custom_fcn1(x), 0, 16, 16, fm);

end

3 Fixed-Point Conversion

3-92

You can now test the generated fixed-point code and compare the results against the
original MATLAB function.

From the Command Line

This example shows how to replace the exp function with a lookup table approximation
in the generated fixed-point code using the programmatic workflow.

Prerequisites

To complete this example, you must install the following products:

• MATLAB
• Fixed-Point Designer
• C compiler (for most platforms, a default C compiler is supplied with MATLAB).

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/ .

You can use mex -setup to change the default compiler. See “Changing Default
Compiler”.

Create Algorithm and Test Files

1 Create a MATLAB function, my_fcn.m, that calls the exp function.

function y = my_fcn(x)

 y = exp(x);

end

2 Create a test file, my_fcn_test.m, that uses my_fcn.m.

close all

x = linspace(-10,10,1e3);

for itr = 1e3:-1:1

 y(itr) = my_fcn(x(itr));

end

plot(x, y);

Configure Approximation

Create a function replacement configuration object to approximate the exp function,
using the default settings of linear interpolation and 1000 points in the lookup table.

 Replace the exp Function with a Lookup Table

3-93

q = coder.approximation('exp');

Set Up Configuration Object

Create a coder.FixptConfig object, fixptcfg. Specify the test file name and enable
numerics testing. Associate the function replacement configuration object with the fixed-
point configuration object.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'my_fcn_test';

fixptcfg.TestNumerics = true;

fixptcfg.DefaultWordLength = 16;

fixptcfg.addApproximation(q);

Convert to Fixed Point

Generate fixed-point MATLAB code.

codegen -float2fixed fixptcfg my_fcn

View Generated Fixed-Point Code

To view the generated fixed-point code, click the link to my_fcn_fixpt.

The generated code contains a lookup table approximation, exp1, for the exp function.
The fixed-point conversion process infers the ranges for the function and then uses an
interpolated lookup table to replace the function. By default, the lookup table uses linear
interpolation, 1000 points, and the minimum and maximum values detected by running
the test file.

The generated fixed-point function, my_fcn_fixpt, calls this approximation instead of
calling exp.

function y = my_fcn_fixpt(x)

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128, ...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

 y = fi(exp1(x), 0, 16,1, fm);

end

You can now test the generated fixed-point code and compare the results against the
original MATLAB function. If the behavior of the generated fixed-point code does not
match the behavior of the original code closely enough, modify the interpolation method
or number of points used in the lookup table and then regenerate code.

3 Fixed-Point Conversion

3-94

Data Type Issues in Generated Code

Within the fixed-point conversion HTML report you have the option to highlight
MATLAB code that results in double, single, or expensive fixed-point operations.
Consider enabling these checks when trying to achieve a strict single, or fixed-point
design.

These checks are disabled by default.

Enable the Highlight Option in a MATLAB Coder Project

1 Open the Settings menu.
2 Under Plotting and Reporting, set Highlight potential data type issues to

Yes.

Enable the Highlight Option at the Command Line

1 Create a fixed-point code configuration object:

cfg = coder.config('fixpt');

2 Set the HighlightPotentialDataTypeIssues property of the configuration object
to true.

cfg.HighlightPotentialDataTypeIssues = true;

Stowaway Doubles

When trying to achieve a strict-single or fixed-point design, manual inspection of code
can be time-consuming and error prone. This check highlights all expressions that result
in a double operation.

Stowaway Singles

This check highlights all expressions that result in a single operation.

Expensive Fixed-Point Operations

The expensive fixed-point operations check identifies optimization opportunities
by highlighting expressions in the MATLAB code which result in cumbersome

 Data Type Issues in Generated Code

3-95

multiplication or division, or expensive rounding in generated code. For more information
on optimizing generated fixed-point code, see “Tips for Making Generated Code More
Efficient”.

Cumbersome Operations

Cumbersome operations most often occur due to insufficient range of output. Avoid
inputs to a multiply or divide operation that have word lengths larger than the base
integer type of your processor. Operations with larger word lengths can be handled in
software, but this approach requires much more code and is much slower.

Expensive Rounding

Traditional handwritten code, especially for control applications, almost always uses
"no effort" rounding. For example, for unsigned integers and two's complement signed
integers, shifting right and dropping the bits is equivalent to rounding to floor. To get
results comparable to, or better than, what you expect from traditional handwritten code,
use the floor rounding method. This check identifies expensive rounding operations in
multiplication and division.

Expensive Comparison Operations

Comparison operations generate extra code when a casting operation is required to do
the comparison. For example, when comparing an unsigned integer to a signed integer,
one of the inputs must first be cast to the signedness of the other before the comparison
operation can be performed. Consider optimizing the data types of the input arguments
so that a cast is not required in the generated code.

3-96

4

Code Generation

• “Create and Set Up Your Project” on page 4-2
• “Primary Function Input Specification” on page 4-6
• “Basic HDL Code Generation with the Workflow Advisor” on page 4-10
• “HDL Code Generation from System Objects” on page 4-14
• “Generate Instantiable Code for Functions” on page 4-19
• “Integrate Custom HDL Code Into MATLAB Design” on page 4-21
• “Enable MATLAB Function Block Generation” on page 4-27
• “System Design with HDL Code Generation from MATLAB and Simulink” on page

4-28
• “Generate Xilinx System Generator Black Box Block” on page 4-32
• “Generate Xilinx System Generator for DSP Black Box from MATLAB HDL Design”

on page 4-34
• “Generate HDL Code from MATLAB Code Using the Command Line Interface” on

page 4-40
• “Specify the Clock Enable Rate” on page 4-45
• “Specify Test Bench Clock Enable Toggle Rate” on page 4-47
• “Generate an HDL Coding Standard Report from MATLAB” on page 4-49
• “Generate an HDL Lint Tool Script” on page 4-53
• “Generate a Board-Independent IP Core from MATLAB” on page 4-55
• “Minimize Clock Enables” on page 4-58

4 Code Generation

4-2

Create and Set Up Your Project

In this section...

“Create a New Project” on page 4-2
“Open an Existing Project” on page 4-4
“Add Files to the Project” on page 4-4

Create a New Project

1 At the MATLAB command line, enter:

hdlcoder

2 Enter a project name in the project dialog box and click OK.

HDL Coder creates the project in the local working folder, and, by default, opens the
project in the right side of the MATLAB workspace.

 Create and Set Up Your Project

4-3

Alternatively, you can create a new HDL Coder project from the apps gallery:

1 On the Apps tab, on the far right of the Apps section, click the arrow .
2 Under Code Generation, click HDL Coder.
3 Enter a project name in the project dialog box and click OK.

4 Code Generation

4-4

Open an Existing Project

At the MATLAB command line, enter:

open project_name

where project_name specifies the full path to the project file.

Alternatively, navigate to the folder that contains your project and double-click the .prj
file.

Add Files to the Project

Add the MATLAB Function (Design Under Test)

First, you must add the MATLAB file from which you want to generate code to the
project. Add only the top-level function that you call from MATLAB (the Design Under
Test). Do not add files that are called by this file. Do not add files that have spaces in
their names. The path must not contain spaces, as spaces can lead to code generation
failures in certain operating system configurations.

To add a file, do one of the following:

• In the project pane, under MATLAB Function , click the Add MATLAB function
link and browse to the file.

• Drag a file from the current folder and drop it in the project pane under MATLAB
Function.

If the functions that you added have inputs, and you do not specify a test bench, you
must define these inputs. See “Primary Function Input Specification”.

Add a MATLAB Test Bench

You must add a MATLAB test bench unless your design does not need fixed-point
conversion and you do not want to generate an RTL test bench. If you do not add a
test bench, you must define the inputs to your top-level MATLAB function. For more
information, see “Primary Function Input Specification”.

To add a test bench, do one of the following:

• In the project panel, under MATLAB Test Bench, click the Add MATLAB test
bench link and browse to the file.

 Create and Set Up Your Project

4-5

• Drag a file from the current folder and drop it in the project pane under MATLAB
Test Bench.

4 Code Generation

4-6

Primary Function Input Specification

In this section...

“When to Specify Input Properties” on page 4-6
“Why You Must Specify Input Properties” on page 4-6
“Properties to Specify” on page 4-6
“Rules for Specifying Properties of Primary Inputs” on page 4-8
“Methods for Defining Properties of Primary Inputs” on page 4-8

When to Specify Input Properties

If you supply a test bench for your MATLAB algorithm, you do not need to manually
specify the primary function inputs. The HDL Coder software uses the test bench to infer
the data types.

Why You Must Specify Input Properties

HDL Coder must determine the properties of all variables in the MATLAB files at
compile time. To infer variable properties in MATLAB files, HDL Coder must be able
to identify the properties of the inputs to the primary function, also known as the top-
level or entry-point function. Therefore, if your primary function has inputs, you must
specify the properties of these inputs, to HDL Coder. If your primary function has no
input parameters, HDL Coder can compile your MATLAB file without modification. You
do not need to specify properties of inputs to local functions or external functions called
by the primary function.

If you use the tilde (~) character to specify unused function inputs in an HDL Coder
project, and you want a different type to appear in the generated code, specify the type.
Otherwise, the inputs default to real, scalar doubles.

Properties to Specify

If your primary function has inputs, you must specify the following properties for each
input.

For... Specify properties...

 Class Size Complexity numerictype fimath

 Primary Function Input Specification

4-7

For... Specify properties...

Fixed-point
inputs
Other inputs

The following data types are not supported for primary function inputs, although you can
use them within the primary function:

• structure
• matrix

Variable-size data is not supported in the test bench or the primary function.

Default Property Values

HDL Coder assigns the following default values for properties of primary function inputs.

Property Default

class double

size scalar

complexity real

numerictype No default
fimath hdlfimath

Supported Classes

The following table presents the class names supported by HDL Coder.

Class Name Description

logical Logical array of true and false values
char Character array
int8 8-bit signed integer array
uint8 8-bit unsigned integer array
int16 16-bit signed integer array

4 Code Generation

4-8

Class Name Description

uint16 16-bit unsigned integer array
int32 32-bit signed integer array
uint32 32-bit unsigned integer array
single Single-precision floating-point or fixed-point

number array
double Double-precision floating-point or fixed-point

number array
embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs

When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the size or
complexity of primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must specify the
input numerictype and fimath properties.

Methods for Defining Properties of Primary Inputs

Method Advantages Disadvantages

Note: If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method

• Easy to use
• Does not alter original MATLAB

code
• Designed for prototyping a

function that has a small number
of primary inputs

• Must be specified at the
command line every time you
invoke (unless you use a script)

• Not efficient for specifying
memory-intensive inputs such as
large structures and arrays

“Define Input
Properties
Programmatically in
the MATLAB File”

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke HDL Coder

• Uses complex syntax
• HDL Coder project files do not

currently recognize properties
defined programmatically. If you

 Primary Function Input Specification

4-9

Method Advantages Disadvantages

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying memory-
intensive inputs such as large
structures

are using a project, you must
reenter the input types in the
project.

4 Code Generation

4-10

Basic HDL Code Generation with the Workflow Advisor

This example shows how to work with MATLAB® HDL Coder™ projects to generate
HDL from MATLAB designs.

Introduction

This example helps you familiarize yourself with the following aspects of HDL code
generation:

1 Generating HDL code from MATLAB design.
2 Generating a HDL test bench from a MATLAB test bench.
3 Verifying the generated HDL code using a HDL simulator.
4 Synthesizing the generated HDL code using a HDL synthesis tool.

MATLAB Design

The MATLAB code used in this example implements a simple symmetric FIR filter. This
example also shows a MATLAB test bench that exercises the filter.

design_name = 'mlhdlc_sfir';

testbench_name = 'mlhdlc_sfir_tb';

1 MATLAB Design: mlhdlc_sfir
2 MATLAB testbench: mlhdlc_sfir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir'];

% Create a temporary folder and copy the MATLAB files.

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

 Basic HDL Code Generation with the Workflow Advisor

4-11

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc_sfir_tb

Create a New HDL Coder Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc_sfir

Next, add the file 'mlhdlc_sfir.m' to the project as the MATLAB Function and
'mlhdlc_sfir_tb.m' as the MATLAB Test Bench.

You can refer to “Getting Started with MATLAB to HDL Workflow” tutorial for a more
complete introduction to creating and populating HDL Coder projects.

Step 1: Generate Fixed-Point MATLAB Code

Right-click the 'Float-to-Fixed Workflow' step and choose the option 'Run this task' to run
all the steps to generate fixed-point MATLAB code.

Examine the generated fixed-point MATLAB code by clicking the links in the log window
to open the MATLAB code in the editor.

For more details on fixed-point conversion, refer to the “Floating-Point to Fixed-Point
Conversion” tutorial.

4 Code Generation

4-12

Step 2: Generate HDL Code

This step generates Verilog code from the generated fixed-point MATLAB design, and a
Verilog test bench from the MATLAB test bench wrapper.

To set code generation options and generate HDL code:

1 Click the 'Code Generation' step to view the HDL code generation options panel.
2 In the Target tab, choose 'Verilog' as the 'Language' option.
3 Select the 'Generate HDL' and 'Generate HDL test bench' options.
4 In the 'Optimizations' tab, choose '1' as the Input and Output pipeline length, and

enable the 'Distribute pipeline registers' option.
5 In the 'Coding style' tab, choose 'Include MATLAB source code as comments'

and 'Generate report' to generate a code generation report with comments and
traceability links.

 Basic HDL Code Generation with the Workflow Advisor

4-13

6 Click the 'Run' button to generate both the Verilog design and testbench with
reports.

Examine the log window and click the links to explore the generated code and the
reports.

Step 3: Simulate the Generated Code

In the 'HDL Verification' step, select 'Verify with HDL Test Bench' substep and choose
the 'Multi-file test bench' option in 'Test Bench Options' sub-tab. This option helps to
generate HDL test bench code and test bench data (stimulus and response) in separate
files.

HDL Coder automates the process of generating a HDL test bench and running the
generated HDL test bench using the ModelSim® or ISIM™ simulator, and reports if the
generated HDL simulation matches the numerics and latency with respect to the fixed-
point MATLAB simulation.

Step 4: Synthesize the Generated Code

HDL Coder also creates a Xilinx® ISE™ or Altera® Quartus™ project with the selected
options and runs the selected logic synthesis and place-and-route steps for the generated
HDL code.

Examine the log window to view the results of synthesis steps.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

4 Code Generation

4-14

HDL Code Generation from System Objects

This example shows how to generate HDL code from MATLAB® code that contains
System objects.

MATLAB Design

The MATLAB code used in this example implements a simple symmetric FIR filter and
uses the dsp.Delay System object to model state. This example also shows a MATLAB
test bench that exercises the filter.

design_name = 'mlhdlc_sysobj_ex';

testbench_name = 'mlhdlc_sysobj_ex_tb';

Let us take a look at the MATLAB design.

type(design_name);

%%

% MATLAB design: Symmetric FIR Filter

%

% Design pattern covered in this example:

% Filter states modeled using DSP System object (dsp.Delay)

% Filter coefficients passed in as parameters to the design

%%

%#codegen

function [y_out, delayed_xout] = mlhdlc_sysobj_ex(x_in, h_in1, h_in2, h_in3, h_in4)

% Symmetric FIR Filter

persistent h1 h2 h3 h4 h5 h6 h7 h8;

if isempty(h1)

 h1 = dsp.Delay('FrameBasedProcessing', false);

 h2 = dsp.Delay('FrameBasedProcessing', false);

 h3 = dsp.Delay('FrameBasedProcessing', false);

 h4 = dsp.Delay('FrameBasedProcessing', false);

 h5 = dsp.Delay('FrameBasedProcessing', false);

 h6 = dsp.Delay('FrameBasedProcessing', false);

 h7 = dsp.Delay('FrameBasedProcessing', false);

 h8 = dsp.Delay('FrameBasedProcessing', false);

end

 HDL Code Generation from System Objects

4-15

h1p = step(h1, x_in);

h2p = step(h2, h1p);

h3p = step(h3, h2p);

h4p = step(h4, h3p);

h5p = step(h5, h4p);

h6p = step(h6, h5p);

h7p = step(h7, h6p);

h8p = step(h8, h7p);

a1 = h1p + h8p;

a2 = h2p + h7p;

a3 = h3p + h6p;

a4 = h4p + h5p;

m1 = h_in1 * a1;

m2 = h_in2 * a2;

m3 = h_in3 * a3;

m4 = h_in4 * a4;

a5 = m1 + m2;

a6 = m3 + m4;

% filtered output

y_out = a5 + a6;

% delayout input signal

delayed_xout = h8p;

end

type(testbench_name);

%%

% MATLAB test bench for the FIR filter

%%

clear mlhdlc_sysobj_ex;

x_in = cos(2.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).';

h1 = -0.1339;

h2 = -0.0838;

h3 = 0.2026;

h4 = 0.4064;

4 Code Generation

4-16

len = length(x_in);

y_out_sysobj = zeros(1,len);

x_out_sysobj = zeros(1,len);

a = 10;

for ii=1:len

 data = x_in(ii);

 % call to the design 'sfir' that is targeted for hardware

 [y_out_sysobj(ii), x_out_sysobj(ii)] = mlhdlc_sysobj_ex(data, h1, h2, h3, h4);

end

figure('Name', [mfilename, '_plot']);

subplot(2,1,1);

plot(1:len,x_in); title('Input signal with noise');

subplot(2,1,2);

plot(1:len,y_out_sysobj); title('Filtered output signal');

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_sysobj_intro'];

% Create a temporary folder and copy the MATLAB files.

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc_sysobj_ex_tb

 HDL Code Generation from System Objects

4-17

Create a New HDL Coder™ Project

To create a new project, enter the following command:

coder -hdlcoder -new mlhdlc_sysobj_prj

Next, add the file 'mlhdlc_sysobj_ex.m' to the project as the MATLAB Function and
'mlhdlc_sysobj_ex_tb.m' as the MATLAB Test Bench.

You can refer to the “Getting Started with MATLAB to HDL Workflow” tutorial for a
more complete tutorial on creating and populating MATLAB HDL Coder projects.

Run Fixed-Point Conversion and HDL Code Generation

4 Code Generation

4-18

Launch the Workflow Advisor. In the Workflow Advisor, right-click the 'Code Generation'
step. Choose the option 'Run to selected task' to run all the steps from the beginning
through HDL code generation.

Examine the generated HDL code by clicking the links in the log window.

Supported System objects

Refer to the documentation for a list of System objects supported for HDL code
generation.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_sysobj_intro'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

 Generate Instantiable Code for Functions

4-19

Generate Instantiable Code for Functions

In this section...

“How to Generate Instantiable Code for Functions” on page 4-19
“Generate Code Inline for Specific Functions” on page 4-19
“Limitations for Instantiable Code Generation for Functions” on page 4-19

You can use the Generate instantiable code for functions option to generate a VHDL
entity or Verilog module for each function. The software generates code for each entity
or module in a separate file.

How to Generate Instantiable Code for Functions

To enable instantiable code generation for functions in the UI:

1 In the HDL Workflow Advisor, select the HDL Code Generation task.
2 In the Advanced tab, select Generate instantiable code for functions.

To enable instantiable code generation for functions programmatically, in your
coder.HdlConfig object, set the PartitionFunctions property to true. For example,
to create a coder.HdlConfig object and enable instantiable code generation for
functions:

hdlcfg = coder.config('hdl');

hdlcfg.PartitionFunctions = true;

Generate Code Inline for Specific Functions

If you want to generate instantiable code for some functions but not others, enable
the option to generate instantiable code for functions, and use coder.inline. See
coder.inline for details.

Limitations for Instantiable Code Generation for Functions

The software generates code inline when:

• Function calls are within conditional code or for loops.
• Any function is called with a nonconstant struct input.

4 Code Generation

4-20

• The function has state, such as a persistent variable, and is called multiple times.
• There is an enumeration anywhere in the design function.

If you enable PartitionFunctions , UseMatrixTypesInHDL has no effect.

 Integrate Custom HDL Code Into MATLAB Design

4-21

Integrate Custom HDL Code Into MATLAB Design

hdl.BlackBox provides a way to include custom HDL code, such as legacy or
handwritten HDL code, in a MATLAB design intended for HDL code generation.

When you create a user-defined System object that inherits from hdl.BlackBox, you
specify a port interface and simulation behavior that matches your custom HDL code.

HDL Coder simulates the design in MATLAB using the behavior you define in the
System object. During code generation, instead of generating code for the simulation
behavior, the coder instantiates a module with the port interface you specify in the
System object.

To use the generated HDL code in a larger system, you include the custom HDL source
files with the rest of the generated code.

In this section...

“Define the hdl.BlackBox System object” on page 4-21
“Use System object In MATLAB Design Function” on page 4-23
“Generate HDL Code” on page 4-23
“Limitations for hdl.BlackBox” on page 4-26

Define the hdl.BlackBox System object

1 Create a user-defined System object that inherits from hdl.BlackBox.
2 Configure the black box interface to match the port interface for your custom HDL

code by setting hdl.BlackBox properties in the System object.
3 Define the step method such that its simulation behavior matches the custom HDL

code.

Alternatively, the System object you define can inherit from both hdl.BlackBox
and the matlab.system.mixin.Nondirect class, and you can define output and
update methods to match the custom HDL code simulation behavior.

Example Code

For example, the following code defines a System object, CounterBbox, that inherits
from hdl.BlackBox and represents custom HDL code for a counter that increments

4 Code Generation

4-22

until it reaches a threshold. The CounterBbox reset and step methods model the
custom HDL code behavior.

classdef CounterBbox < hdl.BlackBox % derive from hdl.BlackBox class

 %Counter: Count up to a threshold.

 %

 % This is an example of a discrete-time System object with state

 % variables.

 %

 properties (Nontunable)

 Threshold = 1

 end

 properties (DiscreteState)

 % Define discrete-time states.

 Count

 end

 methods

 function obj = CounterBbox(varargin)

 % Support name-value pair arguments

 setProperties(obj,nargin,varargin{:});

 obj.NumInputs = 1; % define number of inputs

 obj.NumOutputs = 1; % define number of inputs

 end

 end

 methods (Access=protected)

 % Define simulation behavior.

 % For code generation, the coder uses your custom HDL code instead.

 function resetImpl(obj)

 % Specify initial values for DiscreteState properties

 obj.Count = 0;

 end

 function myout = stepImpl(obj, myin)

 % Implement algorithm. Calculate y as a function of

 % input u and state.

 if (myin > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 myout = obj.Count;

 end

 end

 Integrate Custom HDL Code Into MATLAB Design

4-23

end

Use System object In MATLAB Design Function

After you define your System object, use it in the MATLAB design function by creating
an instance and calling its step method.

To generate code, you also need to create a test bench function that exercises the top-
level design function.

Example Code

The following example code shows a top-level design function that creates an instance of
the CounterBbox and calls its step method.

function [y1, y2] = topLevelDesign(u)

persistent mybboxObj myramObj

if isempty(mybboxObj)

 mybboxObj = CounterBbox; % instantiate the black box

 myramObj = hdlram('RAMType', 'Dual port');

end

y1 = step(mybboxObj, u); % call the system object step method

[~, y2] = step(myramObj, uint8(10), uint8(0), true, uint8(20));

The following example code shows a test bench function for the topLevelDesign
function.

clear topLevelDesign

y1 = zeros(1,200);

y2 = zeros(1,200);

for ii=1:200

 [y1(ii), y2(ii)] = topLevelDesign(ii);

end

plot([1:200], y2)

Generate HDL Code

Generate HDL code using the design function and test bench code.

When you use the generated HDL code, include your custom HDL code with the
generated HDL files.

4 Code Generation

4-24

Example Code

In the following generated VHDL code for the CounterBbox example, you can see that
the CounterBbox instance in the MATLAB code maps to an HDL component definition
and instantiation, but HDL code is not generated for the step method.

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.numeric_std.ALL;

ENTITY foo IS

 PORT(clk : IN std_logic;

 reset : IN std_logic;

 clk_enable : IN std_logic;

 u : IN std_logic_vector(7 DOWNTO 0); -- uint8

 ce_out : OUT std_logic;

 y1 : OUT real; -- double

 y2 : OUT std_logic_vector(7 DOWNTO 0) -- uint8

);

END foo;

ARCHITECTURE rtl OF foo IS

 -- Component Declarations

 COMPONENT CounterBbox

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 myin : IN std_logic_vector(7 DOWNTO 0); -- uint8

 myout : OUT real -- double

);

 END COMPONENT;

 COMPONENT DualPortRAM_Inst0

 PORT(clk : IN std_logic;

 enb : IN std_logic;

 wr_din : IN std_logic_vector(7 DOWNTO 0); -- uint8

 wr_addr : IN std_logic_vector(7 DOWNTO 0); -- uint8

 wr_en : IN std_logic;

 rd_addr : IN std_logic_vector(7 DOWNTO 0); -- uint8

 wr_dout : OUT std_logic_vector(7 DOWNTO 0); -- uint8

 rd_dout : OUT std_logic_vector(7 DOWNTO 0) -- uint8

);

 Integrate Custom HDL Code Into MATLAB Design

4-25

 END COMPONENT;

 -- Component Configuration Statements

 FOR ALL : CounterBbox

 USE ENTITY work.CounterBbox(rtl);

 FOR ALL : DualPortRAM_Inst0

 USE ENTITY work.DualPortRAM_Inst0(rtl);

 -- Signals

 SIGNAL enb : std_logic;

 SIGNAL varargout_1 : real := 0.0; -- double

 SIGNAL tmp : unsigned(7 DOWNTO 0); -- uint8

 SIGNAL tmp_1 : unsigned(7 DOWNTO 0); -- uint8

 SIGNAL tmp_2 : std_logic;

 SIGNAL tmp_3 : unsigned(7 DOWNTO 0); -- uint8

 SIGNAL varargout_1_1 : std_logic_vector(7 DOWNTO 0); -- ufix8

 SIGNAL varargout_2 : std_logic_vector(7 DOWNTO 0); -- ufix8

BEGIN

 u_CounterBbox : CounterBbox

 PORT MAP(clk => clk,

 clk_enable => enb,

 reset => reset,

 myin => u, -- uint8

 myout => varargout_1 -- double

);

 u_DualPortRAM_Inst0 : DualPortRAM_Inst0

 PORT MAP(clk => clk,

 enb => enb,

 wr_din => std_logic_vector(tmp), -- uint8

 wr_addr => std_logic_vector(tmp_1), -- uint8

 wr_en => tmp_2,

 rd_addr => std_logic_vector(tmp_3), -- uint8

 wr_dout => varargout_1_1, -- uint8

 rd_dout => varargout_2 -- uint8

);

 enb <= clk_enable;

 y1 <= varargout_1;

 --y2 = u;

4 Code Generation

4-26

 tmp <= to_unsigned(2#00001010#, 8);

 tmp_1 <= to_unsigned(2#00000000#, 8);

 tmp_2 <= '1';

 tmp_3 <= to_unsigned(2#00010100#, 8);

 ce_out <= clk_enable;

 y2 <= varargout_2;

END rtl;

Limitations for hdl.BlackBox

You cannot use hdl.BlackBox to assign values to a VHDL generic or Verilog
parameter in your custom HDL code.

See Also
hdl.BlackBox

Related Examples
• “Generate a Board-Independent IP Core from MATLAB”

 Enable MATLAB Function Block Generation

4-27

Enable MATLAB Function Block Generation

In this section...

“Requirements for MATLAB Function Block Generation” on page 4-27
“Enable MATLAB Function Block Generation” on page 4-27
“Results of MATLAB Function Block Generation” on page 4-27

Requirements for MATLAB Function Block Generation

During HDL code generation, your MATLAB algorithm must go through the floating-
point to fixed-point conversion process, even if it is already a fixed-point algorithm.

Enable MATLAB Function Block Generation

Using the GUI

To enable MATLAB Function block generation using the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, on the left, click Code Generation.
2 In the Advanced tab, select the Generate MATLAB Function Black Box option.

Using the Command Line

To enable MATLAB Function block generation, at the command line, enter:

hdlcfg = coder.config('hdl');

hdlcfg.GenerateMLFcnBlock = true;

Results of MATLAB Function Block Generation

After you generate HDL code, an untitled model opens containing a MATLAB Function
block.

You can use the MATLAB Function block as part of a larger model in Simulink for
simulation and further HDL code generation.

To learn more about generating a MATLAB Function block from a MATLAB algorithm,
see “System Design with HDL Code Generation from MATLAB and Simulink”.

4 Code Generation

4-28

System Design with HDL Code Generation from MATLAB and
Simulink

This example shows how to generate a MATLAB Function block from a MATLAB®
design for system simulation, code generation, and FPGA programming in Simulink®.

Introduction

HDL Coder can generate HDL code from both MATLAB® and Simulink®. The coder can
also generate a Simulink® component, the MATLAB Function block, from your MATLAB
code.

This capability enables you to:

1 Design an algorithm in MATLAB;
2 Generate a MATLAB Function block from your MATLAB design;
3 Use the MATLAB component in a Simulink model of the system;
4 Simulate and optimize the system model;
5 Generate HDL code; and
6 Program an FPGA with the entire system design.

In this example, you will generate a MATLAB Function block from MATLAB code that
implements a FIR filter.

MATLAB Design

The MATLAB code used in the example is a simple FIR filter. The example also shows a
MATLAB testbench that exercises the filter.

design_name = 'mlhdlc_fir';

testbench_name = 'mlhdlc_fir_tb';

1 Design: mlhdlc_fir
2 Test Bench: mlhdlc_fir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the example files into a temporary folder.

 System Design with HDL Code Generation from MATLAB and Simulink

4-29

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

% Create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

To simulate the design with the test bench prior to code generation to make sure there
are no runtime errors, enter the following command:

mlhdlc_fir_tb

Create a New Project

To create a new HDL Coder project, enter the following command:

coder -hdlcoder -new fir_project

Next, add the file 'mlhdlc_fir.m' to the project as the MATLAB Function and
'mlhdlc_fir_tb.m' as the MATLAB Test Bench.

Click the Workflow Advisor button to launch the HDL Workflow Advisor.

Enable the MATLAB Function Block Option

To generate a MATLAB Function block from a MATLAB HDL design, you must have a
Simulink license. If the following command returns '1', Simulink is available:

license('test', 'Simulink')

In the HDL Workflow Advisor Advanced tab, enable the Generate MATLAB Function
Block option.

4 Code Generation

4-30

Run Floating-Point to Fixed-Point Conversion and Generate Code

To generate a MATLAB Function block, you must also convert your design from floating-
point to fixed-point.

Right-click the 'Code Generation' step and choose the option 'Run to selected task' to run
all the steps from the beginning through HDL code generation.

Examine the Generated MATLAB Function Block

An untitled model opens after HDL code generation. It has a MATLAB Function block
containing the fixed-point MATLAB code from your MATLAB HDL design. HDL Coder
automatically applies settings to the model and MATLAB Function block so that they can
simulate in Simulink and generate HDL code.

To generate HDL code from the MATLAB Function block, enter the following command:

makehdl('untitled');

 System Design with HDL Code Generation from MATLAB and Simulink

4-31

You can rename and save the new block to use in a larger Simulink design.

Clean Up the Generated Files

You can run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

4 Code Generation

4-32

Generate Xilinx System Generator Black Box Block

In this section...

“Requirements for System Generator Black Box Block Generation” on page 4-32
“Enable System Generator Black Box Block Generation” on page 4-32
“Results of System Generator Black Box Block Generation” on page 4-33

Requirements for System Generator Black Box Block Generation

You must have Xilinx® ISE Design Suite 13.4 or later to generate a System Generator
Black Box block.

To verify your System Generator setup, at the command line, enter:

xlVersion

Enable System Generator Black Box Block Generation

Using the GUI

To enable System Generator Black Box block generation using the HDL Workflow
Advisor:

1 In the HDL Workflow Advisor, on the left, click Code Generation.
2 In the Advanced tab, select the Generate Xilinx System Generator Black Box

option.
3 In the Clocks & Ports tab, set the following fields:

• For Clock input port, enter clk.
• For Clock enable input port, enter ce.
• For Drive clock enable at, select DUT base rate.

Using the Command Line

To enable System Generator Black Box block generation, at the command line, enter:

hdlcfg = coder.config('hdl');

hdlcfg.GenerateXSGBlock = true;

 Generate Xilinx System Generator Black Box Block

4-33

hdlcfg.ClockInputPort = 'clk';

hdlcfg.ClockEnableInputPort = 'ce';

hdlcfg.EnableRate = 'DutBaseRate';

Results of System Generator Black Box Block Generation

After you generate HDL code, you have:

• An XSG subsystem.
• A System Generator Black Box block within the XSG subsystem.
• A System Generator Black Box configuration M-function.

You can use the XSG subsystem in a Simulink model, or use the Black Box block and
Black Box configuration M-function in a Xilinx System Generator design.

To learn more about generating a System Generator Black Box block, see “Using Xilinx
System Generator for DSP with HDL Coder”.

4 Code Generation

4-34

Generate Xilinx System Generator for DSP Black Box from
MATLAB HDL Design

This example shows how to generate a Xilinx® System Generator for DSP Black Box
block from a MATLAB® HDL design.

Introduction

HDL Coder can generate a System Generator Black Box block and configuration file from
your MATLAB HDL design. After designing an algorithm in MATLAB for HDL code
generation, you can then integrate it into a larger system as a Xilinx System Generator
Black Box block.

HDL Coder places the generated Black Box block in a Xilinx System Generator (XSG)
subsystem. XSG subsystems work with blocks from both Simulink® and Xilinx System
Generator, so you can use the generated black box block to build a larger system for
simulation and code generation.

MATLAB Design

The MATLAB code in the example implements a simple FIR filter. The example also
shows a MATLAB testbench that exercises the filter.

design_name = 'mlhdlc_fir';

testbench_name = 'mlhdlc_fir_tb';

1 Design: mlhdlc_fir
2 Test Bench: mlhdlc_fir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

% Create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

 Generate Xilinx System Generator for DSP Black Box from MATLAB HDL Design

4-35

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

To simulate the design with the test bench to make sure there are no runtime errors
before code generation, enter the following command:

mlhdlc_fir_tb

Create a New Project From the Command Line

To create a new project, enter the following command:

coder -hdlcoder -new fir_project

Next, add the file 'mlhdlc_fir.m' to the project as the MATLAB Function and
'mlhdlc_fir_tb.m' as the MATLAB Test Bench.

Click the Workflow Advisor button to launch the HDL Workflow Advisor.

Generate a Xilinx System Generator for DSP Black Box

To generate a Xilinx System Generator Black Box from a MATLAB HDL design, you
must have Xilinx System Generator configured. Enter the following command to check
System Generator availability:

xlVersion

In the Advanced tab of the Workflow Advisor, enable the Generate Xilinx System
Generator Black Box option:

4 Code Generation

4-36

To generate code compatible with a Xilinx System Generator Black Box, set:

• 'Clock input port' to 'clk'
• 'Clock enable input port' to 'ce'
• 'Drive clock enable at' to 'DUT base rate'

Run Fixed-Point Conversion and Generate Code

Right-click the 'Code Generation' step and choose the 'Run to selected task' option to run
all the steps from the beginning through HDL code generation.

Examine the Generated Model and Config File

A new model opens after HDL code generation. It contains a subsystem called DUT at
the top level.

The DUT subsystem has an XSG subsystem called SysGenSubSystem, which contains:

• A Xilinx System Generator Black Box block
• A System Generator block
• Gateway-in blocks
• Gateway-out blocks

 Generate Xilinx System Generator for DSP Black Box from MATLAB HDL Design

4-37

Notice that in addition to the data ports, there is a reset port on the black box interface,
while 'clk' and 'ce' are registered to System Generator by the Black Box configuration file.

The configuration file and your new model are saved in the same directory with
generated HDL code. You can open the configuration file by entering the following
command:

edit('codegen/mlhdlc_fir/hdlsrc/mlhdlc_fir_FixPt_xsgbbxcfg.m');

4 Code Generation

4-38

You can now use the generated Xilinx System Generator Black Box block and
configuration file in a larger system design.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

 Generate Xilinx System Generator for DSP Black Box from MATLAB HDL Design

4-39

mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

4 Code Generation

4-40

Generate HDL Code from MATLAB Code Using the Command Line
Interface

This example shows how to use the HDL Coder™ command line interface to generate
HDL code from MATLAB® code, including floating-point to fixed-point conversion and
FPGA programming file generation.

Overview

HDL code generation with the command line interface has the following basic steps:

1 Create a 'fixpt' coder config object. (Optional)
2 Create an 'hdl' coder config object.
3 Set config object parameters. (Optional)
4 Run the codegen command to generate code.

The HDL Coder™ command line interface can use two coder config objects with the
codegen command. The optional 'fixpt' coder config object configures the floating-point
to fixed-point conversion of your MATLAB® code. The 'hdl' coder config object configures
HDL code generation and FPGA programming options.

In this example, we explore different ways you can configure your floating-point to fixed-
point conversion and code generation.

The example code implements a discrete-time integrator and its test bench.

Copy the Design and Test Bench Files Into a Temporary Folder

Execute the following code to copy the design and test bench files into a temporary folder:

close all;

design_name = 'mlhdlc_dti';

testbench_name = 'mlhdlc_dti_tb';

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_dti'];

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

 Generate HDL Code from MATLAB Code Using the Command Line Interface

4-41

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Basic Code Generation With Floating-Point to Fixed-Point Conversion

You can generate HDL code and convert the design from floating-point to fixed-point
using the default settings.

You need only your design name, 'mlhdlc_dti', and test bench name, 'mlhdlc_dti_tb':

close all;

% Create a 'fixpt' config with default settings

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

% Create an 'hdl' config with default settings

hdlcfg = coder.config('hdl'); %#ok<NASGU>

After creating 'fixpt' and 'hdl' config objects set up, run the following codegen command to
perform floating-point to fixed-point conversion, generate HDL code.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

Alternatively, if your design already uses fixed-point types and functions, you can skip
fixed-point conversion:

hdlcfg = coder.config('hdl'); % Create an 'hdl' config with default settings

hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

codegen -config hdlcfg mlhdlc_dti

The rest of this example describes how to configure code generation using the 'hdl' and
'fixpt' objects.

Create a Floating-Point to Fixed-Point Conversion Config Object

To perform floating-point to fixed-point conversion, you need a 'fixpt' config object.

Create a 'fixpt' config object and specify your test bench name:

close all;

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

Set Fixed-Point Conversion Type Proposal Options

4 Code Generation

4-42

The coder can propose fixed-point types based on your choice of either word length or
fraction length. These two options are mutually exclusive.

Base the proposed types on a word length of 24:

fixptcfg.DefaultWordLength = 24;

fixptcfg.ProposeFractionLengthsForDefaultWordLength = true;

Alternatively, you can base the proposed fixed-point types on fraction length. The
following code configures the coder to propose types based on a fraction length of 10:

fixptcfg.DefaultFractionLength = 10;

fixptcfg.ProposeWordLengthsForDefaultFractionLength = true;

Set the Safety Margin

The coder increases the simulation data range on which it bases its fixed-point type
proposal by the safety margin percentage. For example, the default safety margin is 4,
which increases the simulation data range used for fixed-point type proposal by 4%.

Set the SafetyMargin to 10%:

fixptcfg.SafetyMargin = 10;

Enable Data Logging

The coder runs the test bench with the design before and after floating-point to fixed-
point conversion. You can enable simulation data logging to plot the data differences
introduced by fixed-point conversion.

Enable data logging in the 'fixpt' config object:

fixptcfg.LogIOForComparisonPlotting = true;

View the Numeric Type Proposal Report

Configure the coder to launch the type proposal report after the coder has proposed fixed-
point types:

fixptcfg.LaunchNumericTypesReport = true;

Specify a Type For a Design Variable

If you want to specify the fixed-point data type for a variable in your design, you can
create a type specification, set its fields, and associate it with the variable.

 Generate HDL Code from MATLAB Code Using the Command Line Interface

4-43

The type specification has the following fields:

• IsInteger: Can be true or false
• ProposedType: A type string, like 'ufix15' or 'int32'.
• RoundingMethod: Can be 'ceil', 'convergent', 'fix', 'floor', 'nearest', or 'round'.
• OverflowAction: Can be 'saturate' or 'wrap'.

Create a type specification and associate it with the 'delayed_xout' variable:

% Create a type specification object.

%

% typeSpec = coder.FixPtTypeSpec;

% Set fields in the typeSpec object.

%

% typeSpec.ProposedType = 'ufix15';

% typeSpec.RoundingMethod = 'nearest';

% typeSpec.OverflowAction = 'saturate';

% Associate the type specification with the variable, 'yt'.

%fixptcfg.addTypeSpecification('mlhdlc_dti', 'yt', typeSpec)

Create an HDL Code Generation Config Object

To generate code, you must create an 'hdl' config object and set your test bench name:

hdlcfg = coder.config('hdl');

hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

Set the Target Language

You can generate either VHDL or Verilog code. The coder generates VHDL code by
default.

To generate Verilog code:

hdlcfg.TargetLanguage = 'Verilog';

Generate HDL Test Bench Code

Generate an HDL test bench from your MATLAB® test bench:

hdlcfg.GenerateHDLTestBench = true;

4 Code Generation

4-44

Simulate the Generated HDL Code Using an HDL Simulator

If you want to simulate your generated HDL code using an HDL simulator, you must also
generate the HDL test bench.

Enable HDL simulation and use the ModelSim simulator:

hdlcfg.SimulateGeneratedCode = true;

hdlcfg.SimulationTool = 'ModelSim'; % or 'ISIM'

Generate an FPGA Programming File

You can generate an FPGA programming file if you have a synthesis tool set up.

Enable synthesis, specify a synthesis tool, and specify an FPGA:

% Enable Synthesis.

hdlcfg.SynthesizeGeneratedCode = true;

% Configure Synthesis tool.

hdlcfg.SynthesisTool = 'Xilinx ISE'; % or 'Altera Quartus II';

hdlcfg.SynthesisToolChipFamily = 'Virtex7';

hdlcfg.SynthesisToolDeviceName = 'xc7vh580t';

hdlcfg.SynthesisToolPackageName = 'hcg1155';

hdlcfg.SynthesisToolSpeedValue = '-2G';

Run Code Generation

Now that you have your 'fixpt' and 'hdl' config objects set up, run the codegen command
to perform floating-point to fixed-point conversion, generate HDL code, and generate an
FPGA programming file:

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

 Specify the Clock Enable Rate

4-45

Specify the Clock Enable Rate

In this section...

“Why Specify the Clock Enable Rate?” on page 4-45
“How to Specify the Clock Enable Rate” on page 4-45

Why Specify the Clock Enable Rate?

When HDL Coder performs area optimizations, it might upsample parts of your design
(DUT), and thereby introduce an increase in your required DUT clock frequency.

If the coder upsamples your design, it generates a message indicating the ratio between
the new clock frequency and your original clock frequency. For example, the following
message indicates that your design’s new required clock frequency is 4 times higher than
the original frequency:

The design requires 4 times faster clock with respect to the base rate = 1

This frequency increase introduces a rate mismatch between your input clock enable and
output clock enable, because the output clock enable runs at the slower original clock
frequency.

With the Drive clock enable at option, you can choose whether to drive the input clock
enable at the faster rate (DUT base rate) or at a rate that is less than or equal to the
original clock enable rate (Input data rate).

How to Specify the Clock Enable Rate

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code
Generation. Click the Clocks & Ports tab.

2 For the Drive clock enable at option, select Input data rate or DUT base rate.

Drive clock enable at Option Clock Enable Behavior

Input data rate (default) Each assertion of the input clock
enable produces an output clock enable
assertion.

You can assert the input clock enable at
a maximum rate of once every N clocks.

4 Code Generation

4-46

Drive clock enable at Option Clock Enable Behavior

N = the upsampled clock rate / original
clock rate.

For example, if you see the message,
“The design requires 4 times
faster clock with respect to

the base rate = 1”, your maximum
input clock enable rate is once every 4
clocks.

DUT base rate Input clock enable rate does not match
the output clock enable rate. You must
assert the input clock enable with your
input data N times to get 1 output clock
enable assertion. N = the upsampled
clock rate / original clock rate.

For example, if you see the message,
“The design requires 4 times
faster clock with respect to

the base rate = 1”, you must assert
the input clock enable 4 times to get 1
output clock enable assertion.

 Specify Test Bench Clock Enable Toggle Rate

4-47

Specify Test Bench Clock Enable Toggle Rate

In this section...

“When to Specify Test Bench Clock Enable Toggle Rate” on page 4-47
“How to Specify Test Bench Clock Enable Toggle Rate” on page 4-47

When to Specify Test Bench Clock Enable Toggle Rate

When you want the test bench to drive your input data at a slower rate than the
maximum input clock enable rate, specify the test bench clock enable toggle rate.

This specification can help you to achieve better test coverage, and to simulate the real
world input data rate.

Note: The maximum input clock enable rate is once every N clock cycles. N = the
upsampled clock rate / original clock rate. Refer to the clock enable behavior for Input
data rate, in “Specify the Clock Enable Rate” on page 4-45.

How to Specify Test Bench Clock Enable Toggle Rate

To set your test bench clock enable toggle rate:

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code
Generation.

2 In the Clocks & Ports tab, for the Drive clock enable at option, select Input
data rate.

3 In the Test Bench tab, for Input data interval, enter 0 or an integer greater than
the maximum input clock enable interval.

Input data interval, I Test Bench Clock Enable Behavior

I = 0 (default) Asserts at the maximum input clock
enable rate, or once every N cycles. N =
the upsampled clock rate / original clock
rate.

I < N Not valid; generates an error.

4 Code Generation

4-48

Input data interval, I Test Bench Clock Enable Behavior

I = N Same as I = 0.
I > N Asserts every I clock cycles.

For example, this timing diagram shows clock enable behavior with Input data
interval = 0. Here, the maximum input clock enable rate is once every 2 cycles.

The following timing diagram shows the same test bench and DUT with Input data
interval = 3.

 Generate an HDL Coding Standard Report from MATLAB

4-49

Generate an HDL Coding Standard Report from MATLAB

In this section...

“Using the HDL Workflow Advisor” on page 4-49
“Using the Command Line” on page 4-51

You can generate an HDL coding standard report that shows how well your generated
code follows industry standards. You can optionally customize the coding standard report
and the coding standard rules.

Using the HDL Workflow Advisor

To generate an HDL coding standard report using the HDL Workflow Advisor:

1 In the HDL Code Generation task, select the Coding Standards tab.
2 For HDL coding standard, select Industry.

4 Code Generation

4-50

 Generate an HDL Coding Standard Report from MATLAB

4-51

3 Optionally, using the other options in the Coding Standards tab, customize the
coding standard rules.

4 Click Run to generate code.

After you generate code, the message window shows a link to the HTML compliance
report.

Using the Command Line

To generate an HDL coding standard report using the command line interface, set the
HDLCodingStandard property to Industry in the coder.HdlConfig object.

For example, to generate HDL code and an HDL coding standard report for a design,
mlhdlc_sfir, with a testbench, mlhdlc_sfir_tb, enter the following commands:

hdlcfg = coder.config('hdl');

hdlcfg.TestBenchName = 'mlhdlc_sfir_tb';

hdlcfg.HDLCodingStandard='Industry';

codegen -config hdlcfg mlhdlc_sfir

Generating Resource Utilization Report resource_report.html

Generating default Industry script file mlhdlc_sfir_mlhdlc_sfir_default.prj

Industry Compliance report with 0 errors, 8 warnings, 4 messages.

Generating Industry Compliance Report mlhdlc_sfir_Industry_report.html

To open the report, click the report link.

You can customize the coding standard report and coding standard rule checks by
specifying an HDL coding standard customization object. For example, suppose you
have a design, mlhdlc_sfir, and testbench, mlhdlc_sfir_tb. You can create an HDL
coding standard customization object, cso, set the maximum if-else statement chain
length to 5 by using the IfElseChain property, and generate code:

hdlcfg = coder.config('hdl');

hdlcfg.TestBenchName = 'mlhdlc_sfir_tb';

hdlcfg.HDLCodingStandard='Industry';

cso = hdlcoder.CodingStandard('Industry');

cso.IfElseChain.length = 5;

hdlcfg.HDLCodingStandardCustomizations = cso;

codegen -config hdlcfg mlhdlc_sfir

4 Code Generation

4-52

See Also

Properties
HDL Coding Standard Customization Properties

More About
• “HDL Coding Standard Report”
• “HDL Coding Standard Rules”

 Generate an HDL Lint Tool Script

4-53

Generate an HDL Lint Tool Script
You can generate a lint tool script to use with a third-party lint tool to check your
generated HDL code.

HDL Coder can generate Tcl scripts for the following lint tools:

• Ascent Lint
• HDL Designer
• Leda
• SpyGlass
• Custom

If you specify one of the supported third-party lint tools, you can either generate a default
tool-specific script, or customize the script by specifying the initialization, command,
and termination strings. If you want to generate a script for a custom lint tool, you must
specify the initialization, command, and termination strings.

HDL Coder writes the initialization, command, and termination strings to a Tcl script
that you can use to run the third-party tool.

How To Generate an HDL Lint Tool Script

Using the HDL Workflow Advisor

1 In the HDL Workflow Advisor, select the HDL Code Generation task.
2 In the Script Options tab, select Lint.
3 For Choose lint tool, select Ascent Lint, HDL Designer, Leda, SpyGlass, or

Custom.
4 Optionally, enter text to customize the Lint script initialization, Lint script

command, and Lint script termination fields. For a custom tool, you must specify
these fields.

After you generate code, the command window shows a link to the lint tool script.

Using the Command Line

To generate an HDL lint tool script from the command line, set the HDLLintTool
property to AscentLint, HDLDesigner, Leda, SpyGlass or Custom in your
coder.HdlConfig object.

4 Code Generation

4-54

To disable HDL lint tool script generation, set the HDLLintTool property to None.

For example, to generate a default SpyGlass lint script using a coder.HdlConfig
object, hdlcfg, enter:

hdlcfg.HDLLintTool = 'SpyGlass';

After you generate code, the command window shows a link to the lint tool script.

To generate an HDL lint tool script with custom initialization, command, and
termination strings, use the HDLLintTool, HDLLintInit, HDLLintCmd, and
HDLLintTerm properties.

For example, you can use the following command to generate a custom Leda lint script
for a DUT subsystem, sfir_fixed\symmetric_fir, with custom initialization,
termination, and command strings:

hdlcfg.HDLLintTool = 'Leda';

hdlcfg.HDLLintInit = 'myInitialization';

hdlcfg.HDLLintCmd = 'myCommand %s';

hdlcfg.HDLLintTerm = 'myTermination';

After you generate code, the command window shows a link to the lint tool script.

Custom Lint Tool Command Specification

If you want to generate a lint tool script for a custom lint tool, you must use %s as a
placeholder for the HDL file name in the generated Tcl script.

For Lint script command or HDLLintCmd, specify the lint command in the following
format:

custom_lint_tool_command -option1 -option2 %s

For example, to set the HDLLintCmd for a coder.HdlConfig object, hdlcfg, where the
lint command is custom_lint_tool_command -option1 -option2, enter:

hdlcfg.HDLLintCmd = 'custom_lint_tool_command -option1 -option2 %s';

 Generate a Board-Independent IP Core from MATLAB

4-55

Generate a Board-Independent IP Core from MATLAB

In this section...

“Generate a Board-Independent IP Core” on page 4-55
“Requirements and Limitations for IP Core Generation” on page 4-57

Generate a Board-Independent IP Core

To generate a board-independent IP core to use in an embedded system integration
environment, such as Altera® Qsys, Xilinx EDK, or Xilinx IP Integrator:

1 Create an HDL Coder project containing your MATLAB design and test bench, or
open an existing project.

2 In the HDL Workflow Advisor, define input types and perform fixed-point
conversion.

To learn how to convert your design to fixed-point, see “HDL Code Generation from a
MATLAB Algorithm”.

3 In the HDL Workflow Advisor, in the Select Code Generation Target task:

• Workflow: Select IP Core Generation.
• Platform: Select Generic Xilinx Platform or Generic Altera Platform.

Depending on your selection, the coder automatically sets Synthesis tool.
For example, if you select Generic Xilinx Platform, Synthesis tool
automatically changes to Xilinx Vivado. You can change the Synthesis tool
to Xilinx ISE.

• Additional source files: If you are using an hdl.BlackBox System object to
include existing Verilog or VHDL code, enter the file names. Enter each file name
manually, separated with a semicolon (;), or by using the ... button. The source
file language must match your target language.

4 Code Generation

4-56

4 In the Set Target Interface step, for each port, select an option from the Target
Platform Interfaces drop-down list.

5 In the HDL Code Generation step, optionally specify code generation options, then
click Run.

6 In the HDL Workflow Advisor message pane, click the IP core report link to view
detailed documentation for your generated IP core.

 Generate a Board-Independent IP Core from MATLAB

4-57

Requirements and Limitations for IP Core Generation

You cannot map to both an AXI4 interface and AXI4-Lite interface in the same IP core.

To map your design function inputs or outputs to an AXI4-Lite interface, the input and
outputs must:

• Have a bit width less than or equal to 32 bits.
• Be scalar.

When mapping design function inputs or outputs to an AXI4-Stream Video interface, the
following requirements apply:

• Ports must have a 32-bit width.
• Ports must be scalar.
• You can have a maximum of one input video port and one output video port.

The AXI4-Stream Video interface is not supported in Coprocessing – blocking
processor/FPGA synchronization mode.

4 Code Generation

4-58

Minimize Clock Enables

In this section...

“Using the GUI” on page 4-59
“Using the Command Line” on page 4-59
“Limitations” on page 4-59

By default, HDL Coder generates code in a style that is intended to map to registers with
clock enables, and the DUT has a top-level clock enable port.

If you do not want to generate registers with clock enables, you can minimize the clock
enable logic. For example, if your target hardware contains registers without clock
enables, you can save hardware resources by minimizing the clock enable logic.

The following VHDL code shows the default style of generated code, which uses clock
enables. The enb signal is the clock enable:

Unit_Delay_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay_out1 <= to_signed(0, 32);

 ELSIF clk'EVENT AND clk = '1' THEN

 IF enb = '1' THEN

 Unit_Delay_out1 <= In1_signed;

 END IF;

 END IF;

 END PROCESS Unit_Delay_process;

The following VHDL code shows the style of code you generate if you minimize clock
enables:

Unit_Delay_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay_out1 <= to_signed(0, 32);

 ELSIF clk'EVENT AND clk = '1' THEN

 Unit_Delay_out1 <= In1_signed;

 END IF;

 END PROCESS Unit_Delay_process;

 Minimize Clock Enables

4-59

Using the GUI

To minimize clock enables, in the HDL Workflow Advisor, in the HDL Code
Generation > Clocks & Ports tab, select Minimize clock enables.

Using the Command Line

To minimize clock enables, in the coder.HdlConfig configuration object, set the
MinimizeClockEnables property to true. For example:

hdlCfg = coder.config('hdl')

hdlCfg.MinimizeClockEnables = true;

Limitations

If you specify area optimizations that the coder implements by increasing the clock
rate in certain regions of the design, you cannot minimize clock enables. The following
optimizations prevent clock enable minimization:

• Resource sharing
• RAM mapping
• Loop streaming

4-60

5

Verification

• “Verify Code with HDL Test Bench” on page 5-2
• “Generate Test Bench With File I/O” on page 5-5

5 Verification

5-2

Verify Code with HDL Test Bench

Simulate the generated HDL design under test (DUT) with test vectors from the test
bench using the specified simulation tool.

1 Start the MATLAB to HDL Workflow Advisor.

2 At step HDL Verification, click Verify with HDL Test Bench.
3 Select Generate HDL test bench.

 Verify Code with HDL Test Bench

5-3

This option enables HDL Coder to generate HDL test bench code from your
MATLAB test script.

4 Optionally, select Simulate generated HDL test bench. This option enables
MATLAB to simulate the HDL test bench with the HDL DUT.

If you select this option, you must also select the Simulation tool.
5 For Test Bench Options, select and set the optional parameters according to the

descriptions in the following table.

HDL Test Bench Parameter Description

Test bench name postfix Specify the postfix for the test bench
name.

Force clock Enable for test bench to force clock input
signals.

Clock high time (ns) Specify the number of nanoseconds the
clock is high.

Clock low time (ns) Specify the number of nanoseconds the
clock is low.

Hold time (ns) Specify the hold time for input signals
and forced reset signals.

Force clock enable Enable to force clock enable.
Clock enable delay (in clock cycles) Specify time (in clock cycles) between

deassertion of reset and assertion of clock
enable.

Force reset Enable for test bench to force reset input
signals.

Reset length (in clock cycles) Specify time (in clock cycles) between
assertion and deassertion of reset.

Hold input data between samples Enable to hold subrate signals between
clock samples.

Input data interval Specifies the number of clock cycles
between assertions of clock enable. For
more information, see “Specify Test
Bench Clock Enable Toggle Rate”.

5 Verification

5-4

HDL Test Bench Parameter Description

Initialize test bench inputs Enable to initialize values on inputs to
test bench before test bench drives data
to DUT.

Multi file test bench Enable to divide generated test bench
into helper functions, data, and HDL test
bench code.

Test bench data file name postfix Specify the string to append to name
of test bench data file when generating
multi-file test bench.

Test bench reference postfix Specify the string to append to names of
reference signals in test bench code.

Ignore data checking (number of
samples)

Specify the number of samples at the
beginning of simulation during which
output data checking is suppressed.

Simulation iteration limit Specify the maximum number of test
samples to use during simulation of
generated HDL code.

6 Optionally, select Skip this step if you don’t want to use the HDL test bench to
verify the HDL DUT.

7 Click Run.

If the test bench and simulation is successful, you should see messages similar to
these in the message pane:

Begin TestBench generation.

Collecting data...

Begin HDL test bench file generation with logged samples

Generating test bench: mlhdlc_sfir_fixpt_tb.vhd

Creating stimulus vectors...

Simulating the design 'mlhdlc_sfir_fixpt' using 'ModelSim'.

Generating Compilation Report mlhdlc_sfir_fixpt_vsim_log_compile.txt

Generating Simulation Report mlhdlc_sfir_fixpt_vsim_log_sim.txt

Simulation successful.

Elapsed Time: 113.0315 sec(s)

If there are errors, those messages appear in the message pane. Fix errors and click
Run.

 Generate Test Bench With File I/O

5-5

Generate Test Bench With File I/O

In this section...

“When to Use File I/O In Test Bench” on page 5-5
“How Test Bench Generation with File I/O Works” on page 5-5
“Test Bench Data Files” on page 5-5
“How to Generate Test Bench with File I/O” on page 5-6
“Limitations When Using File I/O In Test Bench” on page 5-6

When to Use File I/O In Test Bench

By default, HDL Coder generates an HDL testbench that contains the simulation data as
constants. If you have a long running simulation, the generated HDL test bench contains
a large amount of data, and therefore requires more memory to run in an HDL simulator.

Generate your test bench with file I/O when your MATLAB or Simulink simulation is
long, or you experience memory constraints while running your HDL simulation.

How Test Bench Generation with File I/O Works

By default, when you generate an HDL test bench, HDL Coder writes the stimulus and
reference data from your simulation as constants in the test bench code.

When you enable the Use file I/O to read/write test bench data option in the HDL
Workflow Advisor and generate a test bench, HDL Coder saves the DUT input and
output data from your MATLAB or Simulink simulation to data files (.dat).

During HDL simulation, the HDL test bench reads the saved stimulus from the .dat
files and compares the actual DUT output with the expected output, which is also saved
in .dat files. This saves memory compared to the default option.

Note that reference data is delayed by 1 clock cycle in the waveform viewer compared to
default test bench generation. This is due to the delay in reading data from files.

Test Bench Data Files

Stimulus and reference data for each DUT input and output is saved in a separate test
bench data file (.dat), with the following exceptions:

5 Verification

5-6

• 2 files are generated for the real and imaginary parts of complex data.
• Constant DUT input data is written to the test bench as constants, the same as for

the default option.

Vector input or output data is saved as a single file.

How to Generate Test Bench with File I/O

To create and use data files for reading and writing test bench input and output data:

1 In the HDL Workflow Advisor, select the HDL Verification > Verify with HDL
Test Bench task.

2 In the Test bench Options tab, enable the Use file I/O for test bench option.

Limitations When Using File I/O In Test Bench

To use file I/O in your test bench, the following limitations apply:

• Double and single data types at DUT inputs and outputs are not supported.
• If your target language is VHDL, the Scalarize vector ports option must be off.

6

Deployment

6 Deployment

6-2

Generate Synthesis Scripts

You can generate customized synthesis scripts for the following tools:

• Xilinx Vivado®

• Xilinx ISE
• Microsemi Libero
• Mentor Graphics® Precision
• Altera Quartus II
• Synopsys® Synplify Pro®

You can also generate a synthesis script for a custom tool by specifying the fields
manually.

To generate a synthesis script:

1 In the HDL Workflow Advisor, select the HDL Code Generation task.
2 In the Script Options tab, select Synthesis.
3 For Choose synthesis tool, select a tool option.
4 If you want to customize your script, use the Synthesis file postfix, Synthesis

initialization, Synthesis command, and Synthesis termination text fields to do
so.

After you generate code, your synthesis Tcl script (.tcl) is in the same folder as your
generated HDL code.

7

Optimization

• “RAM Mapping” on page 7-2
• “Map Persistent Arrays and dsp.Delay to RAM” on page 7-3
• “RAM Mapping Comparison for MATLAB Code” on page 7-8
• “Pipelining” on page 7-9
• “Register Inputs and Outputs” on page 7-10
• “Insert Input and Output Pipeline Registers” on page 7-11
• “Distributed Pipelining” on page 7-12
• “Pipeline MATLAB Variables” on page 7-13
• “Optimize MATLAB Loops” on page 7-15
• “Constant Multiplier Optimization” on page 7-17
• “Specify Constant Multiplier Optimization” on page 7-19
• “Distributed Pipelining for Clock Speed Optimization” on page 7-20
• “Map Matrices to Block RAMs to Reduce Area” on page 7-27
• “Resource Sharing of Multipliers to Reduce Area” on page 7-32
• “Loop Streaming to Reduce Area” on page 7-41
• “Constant Multiplier Optimization to Reduce Area” on page 7-47

7 Optimization

7-2

RAM Mapping

RAM mapping is an area optimization that maps storage and delay elements in your
MATLAB code to RAM. Without this optimization, storage and delay elements are
mapped to registers. RAM mapping can therefore reduce the area of your design in the
target hardware.

You can map the following MATLAB code elements to RAM:

• persistent array variable
• dsp.Delay System object
• hdl.RAM System object

 Map Persistent Arrays and dsp.Delay to RAM

7-3

Map Persistent Arrays and dsp.Delay to RAM

In this section...

“How To Enable RAM Mapping” on page 7-3
“RAM Mapping Requirements for Persistent Arrays and System object Properties” on
page 7-4
“RAM Mapping Requirements for dsp.Delay System Objects” on page 7-6

How To Enable RAM Mapping

1 In the HDL Workflow Advisor, select MATLAB to HDL Workflow > Code
Generation > Optimizations tab.

2 Select the Map persistent array variables to RAMs option.
3 Set the RAM mapping threshold to the size (in bits) of the smallest persistent

array, user-defined System object private property, or dsp.Delay that you want to
map to RAM.

7 Optimization

7-4

RAM Mapping Requirements for Persistent Arrays and System object
Properties

The following table shows a summary of the RAM mapping behavior for persistent arrays
and private properties of a user-defined System object.

Map Persistent Array
Variables to RAMs Setting

Mapping Behavior

on Map to RAM. For restrictions, see “RAM Mapping
Restrictions” on page 7-5.

off Map to registers in the generated HDL code.

 Map Persistent Arrays and dsp.Delay to RAM

7-5

RAM Mapping Restrictions

When you enable RAM mapping, a persistent array or user-defined System object private
property maps to a block RAM when all of the following conditions are true:

• Each read or write access is for a single element only. For example, submatrix access
and array copies are not allowed.

• Address computation logic is not read-dependent. For example, computation of a read
or write address using the data read from the array is not allowed.

• Persistent variables or user-defined System object private properties are initialized to
0 if they have a cyclic dependency. For example, if you have two persistent variables,
A and B, you have a cyclic dependency if A depends on B, and B depends on A.

• If an access is within a conditional statement, the conditional statement uses only
simple logic expressions (&&, ||, ~) or relational operators. For example, in the
following code, r1 does not map to RAM:

if (mod(i,2) > 0)

 a = r1(u);

else

 r1(i) = u;

end

Rewrite complex conditions, such as conditions that call functions, by assigning
them to temporary variables, and using the temporary variables in the conditional
statement. For example, to map r1 to RAM, rewrite the previous code as follows:

temp = mod(i,2);

if (temp > 0)

 a = r1(u);

else

 r1(i) = u;

end

• The persistent array or user-defined System object private property value depends on
external inputs.

For example, in the following code, bigarray does not map to RAM because it does
not depend on u:

function z = foo(u)

persistent cnt bigarray

7 Optimization

7-6

if isempty(cnt)

 cnt = fi(0,1,16,10,hdlfimath);

 bigarray = uint8(zeros(1024,1));

end

z = u + cnt;

idx = uint8(cnt);

temp = bigarray(idx+1);

cnt(:) = cnt + fi(1,1,16,0,hdlfimath) + temp;

bigarray(idx+1) = idx;

• RAMSize is greater than or equal to the RAMMappingThreshold value. RAMSize is
the product NumElements * WordLength * Complexity.

• NumElements is the number of elements in the array.
• WordLength is the number of bits that represent the data type of the array.
• Complexity is 2 for arrays with a complex base type; 1 otherwise.

If any of the above conditions is false, the persistent array or user-defined System object
private property maps to a register in the HDL code.

RAM Mapping Requirements for dsp.Delay System Objects

A summary of the mapping behavior for a dsp.Delay System object is in the following
table.

Map Persistent Array
Variables to RAMs Option

Mapping Behavior

on A dsp.Delay System object maps to a block RAM when all
of the following conditions are true:

• Length property is greater than 4.
• InitialConditions property is 0.
• Delay input data type is one of the following:

• Real scalar with a non-floating-point data type.
• Complex scalar with real and imaginary parts that

are non-floating-point.
• Vector where each element is either a non-floating-

point real scalar or complex scalar.

 Map Persistent Arrays and dsp.Delay to RAM

7-7

Map Persistent Array
Variables to RAMs Option

Mapping Behavior

• RAMSize is greater than or equal to the RAM Mapping
Threshold value.

• RAMSize is the product Length *
InputWordLength.

• InputWordLength is the number of bits that
represent the input data type.

If any of the conditions are false, the dsp.Delay System
object maps to registers in the HDL code.

off A dsp.Delay System object maps to registers in the
generated HDL code.

7 Optimization

7-8

RAM Mapping Comparison for MATLAB Code

hdl.RAM, dsp.Delay, persistent array variables, and user-definedSystem object
private properties can map to RAM, but have different attributes. The following table
summarizes the differences.

Attribute hdl.RAM dsp.Delay Persistent Arrays and
User-Defined System
object Properties

RAM mapping
criteria

Unconditionally
maps to RAM

Maps to RAM in
HDL code under
specific conditions.
See “RAM Mapping
Requirements for
dsp.Delay System
Objects”.

Maps to RAM in
HDL code under
specific conditions.
See “RAM Mapping
Requirements for
Persistent Arrays
and System object
Properties”.

Address generation
and port mapping

User specified Automatic Automatic

Access scheduling User specified Automatically
inferred

Automatically
inferred

Overclocking None None Local multirate
if access schedule
requires it.

Latency with respect
to simulation in
MATLAB.

0 0 2 cycles if local
multirate; 1 cycle
otherwise.

RAM type User specified Dual port Dual port

 Pipelining

7-9

Pipelining

Pipelining helps achieve a higher maximum clock rate by inserting registers at strategic
points to break the critical path. However, the higher clock rate comes at the expense of
increased chip area and increased initial latency.

Port Registers

Input and output port registers for modules help partition a larger design so the critical
path does not extend across module boundaries. Having a port register at each input and
output port is considered good design practice for synchronous interfaces.

Port registers are not affected by distributed pipelining.

To learn how to insert port registers, see “Register Inputs and Outputs”.

Input and Output Pipeline Registers

You can insert multiple input and output pipeline stages. These input and output
pipeline registers can move during distributed pipelining to help reduce your critical path
within the module.

If you insert input and output pipeline stages without applying distributed pipelining,
the registers stay at the DUT inputs and outputs.

To learn how to insert input and output pipeline registers, see “Insert Input and Output
Pipeline Registers”.

Variable Pipelining

Variable pipelining inserts a register at the output of a specific variable in your MATLAB
code. If you know a specific variable is part of the critical path, you can add a pipeline
register at the output of that variable to reduce your critical path.

To learn how to insert a pipeline register at the output of a variable, see “Pipeline
MATLAB Variables”.

7 Optimization

7-10

Register Inputs and Outputs

To insert input or output port registers:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select
the Optimizations tab.

2 Enable Register inputs, Register outputs, or both.

To learn more about input and output port registers, see “Port Registers”.

 Insert Input and Output Pipeline Registers

7-11

Insert Input and Output Pipeline Registers

To insert input or output pipeline register stages:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select
the Optimizations tab.

2 For Input pipelining, Output pipelining, or both, enter the number of pipeline
register stages.

To learn more about input and output pipeline registers, see “Input and Output Pipeline
Registers”.

7 Optimization

7-12

Distributed Pipelining

In this section...

“What is Distributed Pipelining?” on page 7-12
“Benefits and Costs of Distributed Pipelining” on page 7-12
“Selected Bibliography” on page 7-12

What is Distributed Pipelining?

Distributed pipelining, or register retiming, is a speed optimization that moves existing
delays within in a design to reduce the critical path while preserving functional behavior.

The HDL Coder software uses an adaptation of the Leiserson-Saxe retiming algorithm.

Benefits and Costs of Distributed Pipelining

Distributed pipelining can reduce your design’s critical path, enabling you to use a higher
clock rate and increase throughput.

However, distributed pipelining requires your design to contain a number of delays. If
you need to insert additional delays in your design to enable distributed pipelining, this
increases the area and the initial latency of your design.

Selected Bibliography

Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.” Algorithmica. Vol.
6, Number 1, 1991, pp. 5-35.

 Pipeline MATLAB Variables

7-13

Pipeline MATLAB Variables

In this section...

“Using the HDL Workflow Advisor” on page 7-13
“Using the Command Line Interface” on page 7-13
“Limitations of MATLAB Variable Pipelining” on page 7-13

You can insert a pipeline register at the output of a specific MATLAB variable.

To learn more about pipelining, see “Pipelining”.

Using the HDL Workflow Advisor

To pipeline MATLAB variables from the HDL Workflow Advisor:

1 In the HDL Code Generation task, open the Optimizations tab.
2 In the Pipeline variables field, enter MATLAB variable names for which you want

HDL Coder to insert an output register. Separate variable names with a space.

Using the Command Line Interface

To pipeline MATLAB variables, set the PipelineVariables property of your 'hdl'
coder config object.

For example, if you have an 'hdl' coder config object, cfg, pipeline the variables v1, v2,
and v3 by entering the following at the command line:

cfg.PipelineVariables = 'v1 v2 v3'

Limitations of MATLAB Variable Pipelining

HDL Coder cannot insert a pipeline register for a MATLAB variable if it is:

• In a loop.
• A persistent variable that maps to a state element, like a state register or RAM.
• An output of a function. For example, in the following code, you cannot use variable

pipelining to add a pipeline register for y:

7 Optimization

7-14

function [y] = myfun(x)

y = x + 5;

end

• In a data feedback loop. For example, in the following code, the t and pvar variables
cannot be pipelined:

persistent pvar;

t = u + pvar;

pvar = t + v;

 Optimize MATLAB Loops

7-15

Optimize MATLAB Loops

In this section...

“Loop Streaming” on page 7-15
“Loop Unrolling” on page 7-15
“How to Optimize MATLAB Loops” on page 7-15
“Limitations for MATLAB Loop Optimization” on page 7-16

With loop optimization you can stream or unroll loops in generated code. Loop streaming
optimizes for area; loop unrolling optimizes for speed.

Loop Streaming

HDL Coder streams a loop by instantiating the loop body once and using that instance
for each loop iteration.

The advantage of loop streaming is decreased area because the loop body is instantiated
only once. The disadvantage of loop streaming is lower speed.

Loop Unrolling

HDL Coder unrolls a loop by instantiating multiple instances of the loop body in the
generated code.

The unrolled code can participate in distributed pipelining and resource sharing
optimizations. Distributed pipelining can increase speed; resource sharing can decrease
area.

Overall, however, the multiple instances created by loop unrolling are likely to increase
area. Loop unrolling also makes the code less readable.

How to Optimize MATLAB Loops

To select a loop optimization in the Workflow Advisor:

1 Open the Workflow Advisor.
2 In the left pane, select MATLAB HDL Coder Workflow > MATLAB to HDL

Workflow > Code Generation.

7 Optimization

7-16

3 Select the Optimizations tab.
4 For Loop Optimizations, select None, Unroll Loops, or Stream Loops.

Limitations for MATLAB Loop Optimization

HDL Coder cannot stream a loop if:

• The loop index counts down. The loop index must increase by 1 on each iteration.
• There are 2 or more nested loops at the same level of hierarchy within another loop.
• Any particular persistent variable is updated both inside and outside a loop.
• A persistent variable that is initialized to a nonzero value is updated inside the loop.

HDL Coder can stream a loop when the persistent variable is:

• Updated inside the loop and read outside the loop.
• Read within the loop and updated outside the loop.

 Constant Multiplier Optimization

7-17

Constant Multiplier Optimization

The Constant multiplier optimization option enables you to specify use of canonical
signed digit (CSD) or factored CSD (FCSD) optimizations for processing coefficient
multiplier operations.

The following table shows the Constant multiplier optimization values.

Constant Multiplier
Optimization Value

Description

None (default) By default, HDL Coder does not perform CSD or FCSD
optimizations. Code generated for the Gain block retains
multiplier operations.

CSD When you specify this option, the generated code
decreases the area used by the model while maintaining or
increasing clock speed, using canonical signed digit (CSD)
techniques. CSD replaces multiplier operations with add
and subtract operations.

CSD minimizes the number of addition operations
required for constant multiplication by representing
binary numbers with a minimum count of nonzero digits.

FCSD This option uses factored CSD (FCSD) techniques, which
replace multiplier operations with shift and add/subtract
operations on certain factors of the operands. These factors
are generally prime but can also be a number close to a
power of 2, which favors area reduction.

This option lets you achieve a greater area reduction than
CSD, at the cost of decreasing clock speed.

Auto When you specify this option, HDL Coder chooses between
the CSD or FCSD optimizations. The coder chooses
the optimization that yields the most area-efficient
implementation, based on the number of adders required.

HDL Coder does not use multipliers, unless conditions are
such that CSD or FCSD optimizations are not possible (for
example, if the design uses floating-point arithmetic).

7 Optimization

7-18

To learn how to specify constant multiplier optimization, see “Specify Constant
Multiplier Optimization”.

 Specify Constant Multiplier Optimization

7-19

Specify Constant Multiplier Optimization

To specify constant multiplier optimization:

1 In the HDL Workflow Advisor, select the HDL Code Generation task and select
the Optimizations tab.

2 For Constant multiplier optimization, select CSD, FCSD, or Auto.

To learn more about the constant multiplier optimization options, see “Constant
Multiplier Optimization”.

7 Optimization

7-20

Distributed Pipelining for Clock Speed Optimization

This example shows how to use the distributed pipelining and loop unrolling
optimizations in HDL Coder to optimize clock speed.

Introduction

Distributed pipelining is a design-wide optimization supported by HDL Coder for
improving clock frequency. When you turn on the 'Distribute Pipeline Registers' option
in HDL Coder, the coder redistributes the input and output pipeline registers of the
top level function along with other registers in the design in order to minimize the
combinatorial logic between registers and thus maximize the clock speed of the chip
synthesized from the generated HDL code.

Consider the following example design of a FIR filter. The combinatorial logic from an
input or a register to an output or another register contains a sum of products. Loop
unrolling and distributed pipelining moves the output registers at the design level to
reduce the amount of combinatorial logic, thus increasing clock speed.

MATLAB® Design

The MATLAB code used in the example is a simple FIR filter. The example also shows a
MATLAB test bench that exercises the filter.

design_name = 'mlhdlc_fir';

testbench_name = 'mlhdlc_fir_tb';

1 Design: mlhdlc_fir
2 Test Bench: mlhdlc_fir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

 Distributed Pipelining for Clock Speed Optimization

7-21

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure there are
no run-time errors.

mlhdlc_fir_tb

7 Optimization

7-22

Create a New Project From the Command Line

coder -hdlcoder -new fir_project

Next, add the file 'mlhdlc_fir.m' to the project as the MATLAB Function and
'mlhdlc_fir_tb.m' as the MATLAB Test Bench.

You can refer to “Getting Started with MATLAB to HDL Workflow” tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Distributed Pipelining

To increase the clock speed, the user can set a number of input and output pipeline
stages for any design. In this particular example Input pipelining option is set to '1' and

 Distributed Pipelining for Clock Speed Optimization

7-23

Output pipelining option is set to '20'. Without any additional options turned on these
settings will add one input pipeline register at all input ports of the top level design and
20 output pipeline registers at each of the output ports.

If the option 'Distribute pipeline registers' is enabled, HDL Coder tries to reposition the
registers to achieve the best clock frequency.

In addition to moving the input and output pipeline registers, HDL Coder also tries to
move the registers modeled internally in the design using persistent variables or with
system objects like dsp.Delay.

Additional opportunities for improvements become available if you unroll loops. The
'Unroll Loops' option unrolls explicit for-loops in MATLAB code in addition to implicit for-
loops that are inferred for vector and matrix operations. 'Unroll Loops' is necessary for
this example to do distributed pipelining.

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right click on the 'Code Generation' step. Choose the
option 'Run to selected task' to run all the steps from the beginning through the HDL
code generation.

7 Optimization

7-24

Examine the Synthesis Results

Run the logic synthesis step with the following default options if you have ISE installed
on your machine.

In the synthesis report, note the clock frequency reported by the synthesis tool without
any optimization options enabled.

 Distributed Pipelining for Clock Speed Optimization

7-25

When you synthesize the design with the loop unrolling and distributed pipelining
options enabled, you see a significant clock frequency increase with pipelining options
turned on.

7 Optimization

7-26

Clean Up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

 Map Matrices to Block RAMs to Reduce Area

7-27

Map Matrices to Block RAMs to Reduce Area

This example shows how to use the RAM mapping optimization in HDL Coder™ to map
persistent matrix variables to block RAMs in hardware.

Introduction

One of the attractive features of writing MATLAB code is the ease of creating, accessing,
modifying and manipulating matrices in MATLAB.

When processing such MATLAB code, HDL Coder maps these matrices to wires or
registers in HDL. For example, local temporary matrix variables are mapped to wires,
whereas persistent matrix variables are mapped to registers.

The latter tends to be an inefficient mapping when the matrix size is large, since the
number of register resources available is limited. It also complicates synthesis, placement
and routing.

Modern FPGAs feature block RAMs that are designed to have large matrices. HDL
Coder takes advantage of this feature and automatically maps matrices to block RAMs to
improve area efficiency. For certain designs, mapping these persistent matrices to RAMs
is mandatory if the design is to be realized. State-of-the-art synthesis tools may not be
able to synthesize designs when large matrices are mapped to registers, whereas the
problem size is more manageable when the same matrices are mapped to RAMs.

MATLAB Design

design_name = 'mlhdlc_sobel';

testbench_name = 'mlhdlc_sobel_tb';

• MATLAB Design: mlhdlc_sobel
• MATLAB Testbench: mlhdlc_sobel_tb
• Input Image: stop_sign

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the example files into a temporary folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_sobel'];

7 Optimization

7-28

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

% copy the design files to the temporary directory

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc_sobel_tb

Create a New HDL Coder™ Project

Run the following command to create a new project.

coder -hdlcoder -new mlhdlc_ram

Next, add the file 'mlhdlc_sobel.m' to the project as the MATLAB function, and
'mlhdlc_sobel_tb.m' as the MATLAB test bench.

You can refer to “Getting Started with MATLAB to HDL Workflow” tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Turn On the RAM Mapping Optimization

 Map Matrices to Block RAMs to Reduce Area

7-29

Launch the Workflow Advisor.

The checkbox 'Map persistent array variables to RAMs' needs to be turned on to map
persistent variables to block RAMs in the generated code.

Run Fixed-Point Conversion and HDL Code Generation

In the Workflow Advisor, right-click the 'Code Generation' step. Choose the option 'Run
to selected task' to run all the steps from the beginning through HDL code generation.

Examine the Generated Code

Examine the messages in the log window to see the RAM files generated along with the
design.

7 Optimization

7-30

A warning message appears for each persistent matrix variable not mapped to RAM.

Examine the Resource Report

Take a look at the generated resource report, which shows the number of RAMs inferred,
by following the 'Resource Utilization report...' link in the generated code window.

Additional Notes on RAM Mapping

• Persistent matrix variable accesses must be in unconditional regions, i.e., outside any
if-else, switch case, or for-loop code.

 Map Matrices to Block RAMs to Reduce Area

7-31

• MATLAB functions can have any number of RAM matrices.
• All matrix variables in MATLAB that are declared persistent and meet the threshold

criteria get mapped to RAMs.
• A warning is shown when a persistent matrix does not get mapped to RAM.
• Read-dependent write data cycles are not allowed: you cannot compute the write data

as a function of the data read from the matrix.
• Persistent matrices cannot be copied as a whole or accessed as a sub matrix: matrix

access (read/write) is allowed only on single elements of the matrix.
• Mapping persistent matrices with non-zero initial values to RAMs is not supported.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_sobel'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

7 Optimization

7-32

Resource Sharing of Multipliers to Reduce Area

This example shows how to use the resource sharing optimization in HDL Coder™. This
optimization identifies functionally equivalent multiplier operations in MATLAB® code
and shares them in order to optimize design area. You have control over the number of
multipliers to be shared in the design.

Introduction

Resource sharing is a design-wide optimization supported by HDL Coder™ for
implementing area-efficient hardware.

This optimization enables users to share hardware resources by mapping 'N'
functionally-equivalent MATLAB operators, in this case multipliers, to a single operator.

The user specifies 'N' using the 'Resource Sharing Factor' option in the optimization
panel.

Consider the following example model of a symmetric FIR filter. It contains 4 product
blocks that are functionally equivalent and which are mapped to 4 multipliers in
hardware. The Resource Utilization Report shows the number of multipliers inferred
from the design.

MATLAB Design

The MATLAB code used in the example is a simple symmetric FIR filter written in
MATLAB and also has a testbench that exercises the filter.

design_name = 'mlhdlc_sharing';

testbench_name = 'mlhdlc_sharing_tb';

Let us take a look at the MATLAB design.

type(design_name);

%%

% MATLAB design: Symmetric FIR Filter

%

% Key Design pattern covered in this example:

% (1) Filter states represented using the persistent variables

% (2) Filter coefficients passed in as parameters

%%

 Resource Sharing of Multipliers to Reduce Area

7-33

% Copyright 2011 The MathWorks, Inc.

%#codegen

function [y_out, x_out] = mlhdlc_sharing(x_in, h)

% Symmetric FIR Filter

persistent ud1 ud2 ud3 ud4 ud5 ud6 ud7 ud8;

if isempty(ud1)

 ud1 = 0; ud2 = 0; ud3 = 0; ud4 = 0; ud5 = 0; ud6 = 0; ud7 = 0; ud8 = 0;

end

x_out = ud8;

a1 = ud1 + ud8;

a2 = ud2 + ud7;

a3 = ud3 + ud6;

a4 = ud4 + ud5;

% filtered output

y_out = (h(1) * a1 + h(2) * a2) + (h(3) * a3 + h(4) * a4);

% update the delay line

ud8 = ud7;

ud7 = ud6;

ud6 = ud5;

ud5 = ud4;

ud4 = ud3;

ud3 = ud2;

ud2 = ud1;

ud1 = x_in;

end

type(testbench_name);

%%

% MATLAB test bench for the FIR filter

%%

% Copyright 2011 The MathWorks, Inc.

clear mlhdlc_sharing;

7 Optimization

7-34

% input signal with noise

x_in = cos(3.*pi.*(0:0.001:2).*(1+(0:0.001:2).*75)).';

len = length(x_in);

y_out = zeros(1,len);

x_out = zeros(1,len);

% Define a regular MATLAB constant array:

%

% filter coefficients

h = [-0.1339 -0.0838 0.2026 0.4064];

for ii=1:len

 data = x_in(ii);

 % call to the design 'mlhdlc_sfir' that is targeted for hardware

 [y_out(ii), x_out(ii)] = mlhdlc_sharing(data, h);

end

figure('Name', [mfilename, '_plot']);

plot(1:len,y_out);

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir_sharing'];

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Create a New HDL Coder Project

Run the following command to create a new project:

coder -hdlcoder -new mlhdlc_sfir_sharing

 Resource Sharing of Multipliers to Reduce Area

7-35

Next, add the file 'mlhdlc_sharing.m' to the project as the MATLAB Function and
'mlhdlc_sharing_tb.m' as the MATLAB Test Bench.

You can refer to “Getting Started with MATLAB to HDL Workflow” tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Realize an N-to-1 Mapping of Multipliers

Turn on the resource sharing optimization by setting the 'Resource Sharing Factor' to a
positive integer value.

This parameter specifies 'N' in the N-to-1 hardware mapping. Choose a value of N > 1.

Examine the Resource Report

There are 4 multiplication operators in this example design. Generating HDL with a
'SharingFactor' of 4 will result in only one multiplier in the generated code.

7 Optimization

7-36

Sharing Architecture

The following figure shows how the algorithm is implemented in hardware when we
synthesize the generated code without turning on the sharing optimization.

 Resource Sharing of Multipliers to Reduce Area

7-37

The following figure shows the sharing architecture automatically implemented by HDL
Coder when the sharing optimization option is turned on.

7 Optimization

7-38

The inputs to the shared multiplier are time-multiplexed at a faster rate (in this case 4x
faster and denoted in red). The outputs are then routed to the respective consumers at a
slower rate (in green).

 Resource Sharing of Multipliers to Reduce Area

7-39

7 Optimization

7-40

Run Fixed-Point Conversion and HDL Code Generation

Launch the Workflow Advisor and right-click the 'Code Generation' step. Choose the
option 'Run to selected task' to run all the steps from the beginning through the HDL
code generation.

Run Synthesis and Examine Synthesis Results

Synthesize the generated code from the design with this optimization turned off, then
with it turned on, and examine the area numbers in the resource report.

Known Limitations

Sharing two or more multipliers requires that operands of all the multipliers match
exactly in terms of numeric type, size, and complexity.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_sfir_sharing'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

 Loop Streaming to Reduce Area

7-41

Loop Streaming to Reduce Area

This example shows how to use the design-level loop streaming optimization in HDL
Coder™ to optimize area.

Introduction

A MATLAB® for loop generates a FOR_GENERATE loop in VHDL. Such loops are
always spatially unrolled for execution in hardware. In other words, the body of the
software loop is replicated as many times in hardware as the number of loop iterations.
This results in inefficient area usage.

The loop streaming optimization creates an alternative implementation of a software
loop, where the body of the loop is shared in hardware. Instead of spatially replicating
copies of the loop body, HDL Coder™ creates a single hardware instance of the loop body
that is time-multiplexed across loop iterations.

MATLAB Design

The MATLAB code used in this example implements a simple FIR filter. This example
also shows a MATLAB testbench that exercises the filter.

design_name = 'mlhdlc_fir';

testbench_name = 'mlhdlc_fir_tb';

1 Design: mlhdlc_fir
2 Test Bench: mlhdlc_fir_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

7 Optimization

7-42

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the testbench prior to code generation to make sure there are
no runtime errors.

mlhdlc_fir_tb

 Loop Streaming to Reduce Area

7-43

Creating a New Project From the Command Line

To create a new project, enter the following command:

coder -hdlcoder -new fir_project

Next, add the file 'mlhdlc_fir.m' to the project as the MATLAB Function and
'mlhdlc_fir_tb.m' as the MATLAB Test Bench.

Launch the Workflow Advisor.

You can refer to “Getting Started with MATLAB to HDL Workflow” tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

7 Optimization

7-44

Turn On Loop Streaming

The loop streaming optimization in HDL Coder converts software loops (either written
explicitly using a for-loop statement, or inferred loops from matrix/vector operators) to
area-friendly hardware loops.

Run Fixed-Point Conversion and HDL Code Generation

Right-click the 'Code Generation' step. Choose the option 'Run to selected task' to run all
the steps from the beginning through HDL code generation.

Examine the Generated Code

 Loop Streaming to Reduce Area

7-45

When you synthesize the design with the loop streaming optimization, you see a
reduction in area resources in the resource report. Try generating HDL code with and
without the optimization.

The resource report without the loop streaming optimization:

The resource report with the loop streaming optimization enabled:

Known Limitations

Loops will be streamed only if they are regular nested loops. A regular nested loop
structure is defined as one where:

• None of the loops in any level of nesting appear in a conditional flow region, i.e. no
loop can be embedded within if-else or switch-else regions.

• Loop index variables are monotonically increasing.
• Total number of iterations of the loop structure is non-zero.
• There are no back-to-back loops at the same level of the nesting hierarchy.

Clean up the Generated Files

7 Optimization

7-46

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_fir'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

 Constant Multiplier Optimization to Reduce Area

7-47

Constant Multiplier Optimization to Reduce Area

This example shows how to perform a design-level area optimization in HDL Coder by
converting constant multipliers into shifts and adds using canonical signed digit (CSD)
techniques.

Introduction

This tutorial shows how the use of canonical signed digit (CSD) representation
of multiplier constants (for example, in gain coefficients or filter coefficients) can
significantly reduce the area of the hardware implementation.

Canonical Signed Digit (CSD) Representation

A signed digit (SD) representation is an augmented binary representation with weights
0,1 and -1.

where

For example, here are a couple of signed digit representations for 93:

Note that the signed digit representation is non-unique. A canonical signed digit (CSD)
representation is an SD representation with the minimum number of non-zero elements.

Here are some properties of CSD numbers:

1 No two consecutive bits in a CSD number are non-zero
2 CSD representation is guaranteed to have minimum number of non-zero bits

7 Optimization

7-48

3 CSD representation of a number is unique

CSD Multiplier

Let us see how a CSD representation can yield an implementation requiring a minimum
number of adders.

Let us look at CSD example:

y = 231 * x

 = (11100111) * x % 231 in binary form

 = (1001'01001') * x % 231 in signed digit form

 = (256 - 32 + 8 - 1) * x %

 = (x << 8) - (x << 5) + (x << 3) -x % cost of CSD: 3 Adders

FCSD Multiplier

A combination of factorization and CSD representation of a constant multiplier can lead
to further reduction in hardware cost (number of adders).

FCSD can further reduce the number of adders in the above constant multiplier:

y = 231 * x

y = (7 * 33) * x

y_tmp = (x << 5) + x

y = (y_tmp << 3) - y_tmp % cost of FCSD: 2 Adders

CSD/FCSD Costs

This table shows the costs (C) of all 8-bit multipliers.

 Constant Multiplier Optimization to Reduce Area

7-49

MATLAB® Design

The MATLAB code used in this example implements a simple FIR filter. The example
also shows a MATLAB test bench that exercises the filter.

design_name = 'mlhdlc_csd';

testbench_name = 'mlhdlc_csd_tb';

1 Design: mlhdlc_csd

7 Optimization

7-50

2 Test Bench: mlhdlc_csd_tb

Create a New Folder and Copy Relevant Files

Execute the following lines of code to copy the necessary example files into a temporary
folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_csd'];

% create a temporary folder and copy the MATLAB files

cd(tempdir);

[~, ~, ~] = rmdir(mlhdlc_temp_dir, 's');

mkdir(mlhdlc_temp_dir);

cd(mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [design_name,'.m*']), mlhdlc_temp_dir);

copyfile(fullfile(mlhdlc_demo_dir, [testbench_name,'.m*']), mlhdlc_temp_dir);

Simulate the Design

Simulate the design with the test bench prior to code generation to make sure there are
no runtime errors.

mlhdlc_csd_tb

Create a New Project From the Command Line

Create a new project by entering the following command:

coder -hdlcoder -new csd_prj

Next, add the file 'mlhdlc_csd.m' to the project as the MATLAB Function and
'mlhdlc_csd_tb.m' as the MATLAB Test Bench.

You can refer to “Getting Started with MATLAB to HDL Workflow” tutorial for a more
complete tutorial on creating and populating MATLAB HDL Coder projects.

Explore CSD Optimization

Look in the Optimizations tab to explore the constant multiplier optimization options.

 Constant Multiplier Optimization to Reduce Area

7-51

Generate Code without Constant Multiplier Optimization

1 Launch the Workflow Advisor.
2 Click the 'Code Generation' step.
3 In the Optimizations tab, leave the 'Constant multiplier optimization' option as

'None'.
4 Enable the 'Unroll Loops' option to inline multiplier constants.
5 Right-click 'Code Generation' and choose 'Run the task' to run all the steps from the

beginning through HDL code generation.
6 Examine the generated code.

7 Optimization

7-52

Take a look at the resource report for adder and multiplier usage without the CSD
optimization.

Generate Code with CSD Optimization

1 Launch the Workflow Advisor.
2 Click the 'Code Generation' step.
3 In the Optimizations tab, choose 'CSD as the 'Constant multiplier optimization'

option.
4 Enable the 'Unroll Loops' option to inline multiplier constants.
5 Right-click 'Code Generation and select 'Run the task' to run all the steps from the

beginning through HDL code generation.
6 Examine the generated code.

 Constant Multiplier Optimization to Reduce Area

7-53

Examine the code with comments that outline the CSD encoding for all the constant
multipliers.

Look at the resource report and notice that with the CSD optimization, the number of
multipliers is reduced to zero and multipliers are replaced by shifts and adders.

Generate Code with FCSD Optimization

1 Launch the Workflow Advisor.
2 Click the 'Code Generation' step.
3 In the Optimizations tab, choose 'FCSD' as the 'Constant multiplier optimization'

option.
4 Enable the 'Unroll Loops' option to inline multiplier constants.
5 Right-click 'Code Generation and select 'Run the task' to run all the steps from the

beginning through HDL code generation.
6 Examine the generated code.

7 Optimization

7-54

Examine the code with comments that outline the FCSD encoding for all the constant
multipliers. In this particular example, the generated code is identical in terms of area
resources for the multiplier constants. However, take a look at the factorizations of the
constants in the generated code.

If you choose the 'Auto' option, HDL Coder will automatically choose between the CSD
and FCSD options for the best result.

Clean up the Generated Files

Run the following commands to clean up the temporary project folder.

mlhdlc_demo_dir = fullfile(matlabroot, 'toolbox', 'hdlcoder', 'hdlcoderdemos', 'matlabhdlcoderdemos');

mlhdlc_temp_dir = [tempdir 'mlhdlc_csd'];

clear mex;

cd (mlhdlc_demo_dir);

rmdir(mlhdlc_temp_dir, 's');

8

HDL Workflow Advisor Reference

• “HDL Workflow Advisor” on page 8-2
• “MATLAB to HDL Code and Synthesis” on page 8-6

8 HDL Workflow Advisor Reference

8-2

HDL Workflow Advisor

Overview

The HDL Workflow Advisor is a tool that supports a suite of tasks covering the stages
of the ASIC and FPGA design process, including converting floating-point MATLAB
algorithms to fixed-point algorithms. Some tasks perform code validation or checking;
others run the HDL code generator or third-party tools. Each folder at the top level of the
HDL Workflow Advisor contains a group of related tasks that you can select and run.

Use the HDL Workflow Advisor to:

 HDL Workflow Advisor

8-3

• Convert floating-point MATLAB algorithms to fixed-point algorithms.

If you already have a fixed-point MATLAB algorithm, set Design needs conversion
to Fixed Point? to No to skip this step.

• Generate HDL code from fixed-point MATLAB algorithms.
• Simulate the HDL code using a third-party simulation tool.
• Synthesize the HDL code and run a mapping process that maps the synthesized logic

design to the target FPGA.
• Run a Place and Route process that takes the circuit description produced by the

previous mapping process, and emits a circuit description suitable for programming
an FPGA.

Procedures

Automatically Run Tasks

To automatically run the tasks within a folder:

1 Click the Run button. The tasks run in order until a task fails.

Alternatively, right-click the folder to open the context menu. From the context
menu, select Run to run the tasks within the folder.

2 If a task in the folder fails:

a Fix the failure using the information in the results pane.
b Continue the run by clicking the Run button.

Run Individual Tasks

To run an individual task:

1 Click the Run button.

Alternatively, right-click the task to open the context menu. From the context menu,
select Run to run the selected task.

2 Review Results. The possible results are:
Pass: Move on to the next task.
Warning: Review results, decide whether to move on or fix.
Fail: Review results, do not move on without fixing.

3 If required, fix the issue using the information in the results pane.
4 Once you have fixed a Warning or Failed task, rerun the task by clicking Run.

8 HDL Workflow Advisor Reference

8-4

Run to Selected Task

To run the tasks up to and including the currently selected task:

1 Select the last task that you want to run.
2 Right-click this task to open the context menu.
3 From the context menu, select Run to Selected Task.

Note: If a task before the selected task fails, the Workflow Advisor stops at the failed
task.

 HDL Workflow Advisor

8-5

Reset a Task

To reset a task:

1 Select the task that you want to reset.
2 Right-click this task to open the context menu.
3 From the context menu, select Reset Task to reset this and subsequent tasks.

Reset All Tasks in a Folder

To reset a task:

1 Select the folder that you want to reset.
2 Right-click this folder to open the context menu.
3 From the context menu, select Reset Task to reset the tasks this folder and

subsequent folders.

8 HDL Workflow Advisor Reference

8-6

MATLAB to HDL Code and Synthesis

In this section...

“MATLAB to HDL Code Conversion” on page 8-6
“Code Generation: Target Tab” on page 8-6
“Code Generation: Coding Style Tab” on page 8-7
“Code Generation: Clocks and Ports Tab” on page 8-9
“Code Generation: Test Bench Tab” on page 8-11
“Code Generation: Optimizations Tab” on page 8-13
“Simulation and Verification” on page 8-15
“Synthesis and Analysis” on page 8-15

MATLAB to HDL Code Conversion

The MATLAB to HDL Workflow task in the HDL Workflow Advisor generates HDL
code from fixed-point MATLAB code, and simulates and verifies the HDL against the
fixed-point algorithm. HDL Coder then runs synthesis, and optionally runs place and
route to generate a circuit description suitable for programming an ASIC or FPGA.

Code Generation: Target Tab

Select target hardware and language and required outputs.

Input Parameters

Target
Target hardware. Select from the list:

Generic ASIC/FPGA
Xilinx
Altera
Simulation

Language
Select the language (VHDL or Verilog) in which code is generated. The selected
language is referred to as the target language.

Default: VHDL

 MATLAB to HDL Code and Synthesis

8-7

Check HDL Conformance
Enable HDL conformance checking.

Default: Off
Generate HDL

Enable generation of HDL code for the fixed-point MATLAB algorithm.

Default: On
Generate HDL Test Bench

Enable generation of HDL code for the fixed-point test bench.

Default: Off
Generate EDA Scripts

Enable generation of script files for third-party electronic design automation (EDA)
tools. These scripts let you compile and simulate generated HDL code and synthesize
generated HDL code.

Default: On

Code Generation: Coding Style Tab

Parameters that affect the style of the generated code.

Input Parameters

Preserve MATLAB code comments
Include MATLAB code comments in generated code.

Default: On
Include MATLAB source code as comments

Include MATLAB source code as comments in the generated code. The comments
precede the associated generated code. Includes the function signature in the
function banner.

Default: On
Generate Report

Enable a code generation report.

8 HDL Workflow Advisor Reference

8-8

Default: Off
VHDL File Extension

Specify the file name extension for generated VHDL files.

Default: .vhd
Verilog File Extension

Specify the file name extension for generated Verilog files.

Default: .v
Comment in header

Specify comment lines in header of generated HDL and test bench files.

Default: None

Text entered in this field generates a comment line in the header of the generated
code. The code generator adds leading comment characters for the target language.
When newlines or linefeeds are included in the string, the code generator emits
single-line comments for each newline.

Package postfix
HDL Coder applies this option only if a package file is required for the design.

Default: _pkg
Entity conflict postfix

Specify the string to resolve duplicate VHDL entity or Verilog module names in
generated code.

Default: _block
Reserved word postfix

Specify a string to append to value names, postfix values, or labels that are VHDL or
Verilog reserved words.

Default: _rsvd
Clocked process postfix

Specify a string to append to HDL clock process names.

Default: _process
Complex real part postfix

 MATLAB to HDL Code and Synthesis

8-9

Specify a string to append to real part of complex signal names.

Default: '_re'
Complex imaginary part postfix

Specify a string to append to imaginary part of complex signal names.

Default: '_im'
Pipeline postfix

Specify a string to append to names of input or output pipeline registers.

Default: '_pipe'
Enable prefix

Specify the base name string for internal clock enables and other flow control signals
in generated code.

Default: 'enb'

Code Generation: Clocks and Ports Tab

Clock and port settings

Input Parameters

Reset type
Specify whether to use asynchronous or synchronous reset logic when generating
HDL code for registers.

Default: Asynchronous
Reset Asserted level

Specify whether the asserted (active) level of reset input signal is active-high or
active-low.

Default: Active-high
Reset input port

Enter the name for the reset input port in generated HDL code.

Default: reset
Clock input port

8 HDL Workflow Advisor Reference

8-10

Specify the name for the clock input port in generated HDL code.

Default: clk
Clock enable input port

Specify the name for the clock enable input port in generated HDL code.

Default: clk
Oversampling factor

Specify frequency of global oversampling clock as a multiple of the design under test
(DUT) base rate (1).

Default: 1
Input data type

Specify the HDL data type for input ports.

For VHDL, the options are:

• std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR
• signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED

Default: std_logic_vector

For Verilog, the options are:

• In generated Verilog code, the data type for all ports is ‘wire’. Therefore, Input
data type is disabled when the target language is Verilog.

Default: wire
Output data type

Specify the HDL data type for output data types.

For VHDL, the options are:

• Same as input data type

Specifies that output ports have the same type specified by Input data type.

 MATLAB to HDL Code and Synthesis

8-11

• std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR
• signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED

Default: Same as input data type

For Verilog, the options are:

• In generated Verilog code, the data type for all ports is ‘wire’. Therefore, Output
data type is disabled when the target language is Verilog.

Default: wire

Clock enable output port
Specify the name for the clock enable input port in generated HDL code.

Default: clk_enable

Code Generation: Test Bench Tab

Test bench settings.

Input Parameters

Test bench name postfix
Specify a string appended to names of reference signals generated in test bench code.

Default: '_tb’
Force clock

Specify whether the test bench forces clock enable input signals.

Default: On
Clock High time (ns)

Specify the period, in nanoseconds, during which the test bench drives clock input
signals high (1).

Default: 5

8 HDL Workflow Advisor Reference

8-12

Clock low time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock input
signals low (0).

Default: 5
Hold time (ns)

Specify a hold time, in nanoseconds, for input signals and forced reset input signals.

Default: 2 (given the default clock period of 10 ns)
Setup time (ns)

Display setup time for data input signals.

Default: 0
Force clock enable

Specify whether the test bench forces clock enable input signals.

Default: On
Clock enable delay (in clock cycles)

Define elapsed time (in clock cycles) between deassertion of reset and assertion of
clock enable.

Default: 1
Force reset

Specify whether the test bench forces reset input signals.

Default: On
Reset length (in clock cycles)

Define length of time (in clock cycles) during which reset is asserted.

Default: 2
Hold input data between samples

Specify how long subrate signal values are held in valid state.

Default: On
Initialize testbench inputs

Specify initial value driven on test bench inputs before data is asserted to device
under test (DUT).

 MATLAB to HDL Code and Synthesis

8-13

Default: Off
Multi file testbench

Divide generated test bench into helper functions, data, and HDL test bench code
files.

Default: Off
Test bench data file name postfix

Specify suffix added to test bench data file name when generating multi-file test
bench.

Default: '_data’
Test bench reference post fix

Specify a string appended to names of reference signals generated in test bench code.

Default: '_ref'
Ignore data checking (number of samples)

Specify number of samples during which output data checking is suppressed.

Default: 0
Use fiaccel to accelerate test bench logging

To generate a test bench, HDL Coder simulates the original MATLAB code. Use the
Fixed-Point Designer fiaccel function to accelerate this simulation and accelerate
test bench logging.

Default: On

Code Generation: Optimizations Tab

Optimization settings

Input Parameters

Map persistent array variables to RAMs
Select to map persistent array variables to RAMs instead of mapping to shift
registers.

Default: Off

8 HDL Workflow Advisor Reference

8-14

Dependencies:

• RAM Mapping Threshold
• Persistent variable names for RAM Mapping

RAM Mapping Threshold
Specify the minimum RAM size required for mapping persistent array variables to
RAMs.

Default: 256
Persistent variable names for RAM Mapping

Provide the names of the persistent variables to map to RAMs.

Default: None
Input Pipelining

Specify number of pipeline registers to insert at top level input ports. Can improve
performance and help to meet timing constraints.

Default: 0
Output Pipelining

Specify number of pipeline registers to insert at top level output ports. Can improve
performance and help to meet timing constraints.

Default: 0
Distribute Pipeline Registers

Reduces critical path by changing placement of registers in design. Operates on
all registers, including those inserted using the Input Pipelining and Output
Pipelining parameters, and internal design registers.

Default: Off
Sharing Factor

Number of additional sources that can share a single resource, such as a multiplier.
To share resources, set Sharing Factor to 2 or higher; a value of 0 or 1 turns off
sharing.

In a design that performs identical multiplication operations, HDL Coder can reduce
the number of multipliers by the sharing factor. This can significantly reduce area.

 MATLAB to HDL Code and Synthesis

8-15

Default: 0

Simulation and Verification

Simulates the generated HDL code using the selected simulation tool.

Input Parameters

Simulation tool
Lists the available simulation tools.

Default: None
Skip this step

Default: Off

Results and Recommended Actions

Conditions Recommended Action

No simulation tool available on system
path.

Add your simulation tool path to the
MATLAB system path, then restart
MATLAB. For more information, see
“Synthesis Tool Path Setup”.

Synthesis and Analysis

This folder contains tasks to create a synthesis project for the HDL code. The task then
runs the synthesis and, optionally, runs place and route to generate a circuit description
suitable for programming an ASIC or FPGA.

Input Parameters

Skip this step
Default: Off

Skip this step if you are interested only in simulation or you do not have a synthesis
tool.

Create Project

Create synthesis project for supported synthesis tool.

8 HDL Workflow Advisor Reference

8-16

Description

This task creates a synthesis project for the selected synthesis tool and loads the project
with the HDL code generated for your MATLAB algorithm.

You can select the family, device, package, and speed that you want.

When the project creation is complete, the HDL Workflow Advisor displays a link to the
project in the right pane. Click this link to view the project in the synthesis tool's project
window.
Input Parameters

Synthesis Tool
Select from the list:

• Altera Quartus II

Generate a synthesis project for Altera Quartus II. When you select this option,
HDL Coder sets:

• Chip Family to Stratix II
• Device Name to EP2S60F1020C4

You can manually change these settings.
• Xilinx ISE

Generate a synthesis project for Xilinx ISE. When you select this option, HDL
Coder:

• Sets Chip Family to Virtex4
• Sets Device Name to xc4vsx35
• Sets Package Name to ff6...
• Sets Speed Value to —...

You can manually change these settings.

Default: No Synthesis Tool Specified

When you select No Synthesis Tool Specified, HDL Coder does not generate a
synthesis project. It clears and disables the fields in the Synthesis Tool Selection
pane.

 MATLAB to HDL Code and Synthesis

8-17

Chip Family
Target device family.

Default: None
Device Name

Specific target device, within selected family.

Default: None
Package Name

Available package choices. The family and device determine these choices.

Default: None
Speed Value

Available speed choices. The family, device, and package determine these choices.

Default: None

Results and Recommended Actions

Conditions Recommended Action

Synthesis tool fails to create project. Read the error message returned by
synthesis tool, then check the synthesis
tool version, and check that you have write
permission for the project folder.

Synthesis tool does not appear in dropdown
list.

Add your synthesis tool path to the
MATLAB system path, then restart
MATLAB. For more information, see
“Synthesis Tool Path Setup”.

Run Logic Synthesis

Launch selected synthesis tool and synthesize the generated HDL code.
Description

This task:

• Launches the synthesis tool in the background.
• Opens the previously generated synthesis project, compiles HDL code, synthesizes the

design, and emits netlists and related files.

8 HDL Workflow Advisor Reference

8-18

• Displays a synthesis log in the Result subpane.

Results and Recommended Actions

Conditions Recommended Action

Synthesis tool fails when running place and
route.

Read the error message returned by the
synthesis tool, modify the MATLAB code,
then rerun from the beginning of the HDL
Coder workflow.

Run Place and Route

Launches the synthesis tool in the background and runs a Place and Route process.

Description

This task:

• Launches the synthesis tool in the background.
• Runs a Place and Route process that takes the circuit description produced by the

previous mapping process, and emits a circuit description suitable for programming
an FPGA.

• Displays a log in the Result subpane.

Input Parameters

Skip this step
If you select Skip this step, the HDL Workflow Advisor executes the workflow, but
omits the Perform Place and Route, marking it Passed. You might want to select
Skip this step if you prefer to do place and route work manually.

Default: Off

Results and Recommended Actions

Conditions Recommended Action

Synthesis tool fails when running place and
route.

Read the error message returned by the
synthesis tool, modify the MATLAB code,
then rerun from the beginning of the HDL
Coder workflow.

HDL Code Generation from Simulink

9

Model Design for HDL Code
Generation

• “Signal and Data Type Support” on page 9-2
• “Generate Code For Tunable Parameters” on page 9-4

9 Model Design for HDL Code Generation

9-2

Signal and Data Type Support

In this section...

“Overview” on page 9-2
“Buses” on page 9-2
“Enumerations” on page 9-2
“Unsupported Signal and Data Types” on page 9-3

Overview

HDL Coder supports code generation for Simulink signal types and data types with a few
special cases.

Buses

You can generate HDL code for designs that use virtual and nonvirtual buses.

For example, you can generate code for designs that contain:

• DUT subsystem ports connected to buses
• Simulink and Stateflow® blocks that support buses and HDL code generation.

Bus Support Limitations

You cannot generate code for designs that use the following:

• Array of buses
• Black box subsystem connected to a bus
• Black box model reference connected to a bus

Enumerations

You can generate code for Simulink, MATLAB, or Stateflow enumerations within your
design.

Requirements For Enumerations

The enumeration values must be monotonically increasing.

 Signal and Data Type Support

9-3

Enumeration Support Limitations

• Your design cannot use enumerations at the top-level DUT ports.
• If your target language is Verilog, all enumeration member names must be unique

within the DUT.

Unsupported Signal and Data Types

Variable-size signals are not supported for code generation.

More About
• “Signal Types”
• “Data Types”
• “Composite (Bus) Signals”
• “Use Enumerated Data in Simulink Models”
• “Enumerated Data”

9 Model Design for HDL Code Generation

9-4

Generate Code For Tunable Parameters

In this section...

“Create and Use a Tunable Parameter” on page 9-4
“Generated Code For a Tunable Parameter” on page 9-5
“Limitations” on page 9-5

Tunable parameters that you use to adjust your model behavior during simulation can
map to top-level DUT ports in your generated HDL code. HDL Coder generates one DUT
port per tunable parameter.

If you want to generate HDL code for tunable parameters, you can use them in the
following blocks:

• Gain
• Constant

Create and Use a Tunable Parameter

To add a tunable parameter that maps to a DUT port in the generated code:

1 Create a tunable parameter with StorageClass set to ExportedGlobal.

For example, to create a tunable parameter, myParam, and initialize it to 5, at the
command line, enter:

myParam = Simulink.Parameter;

myParam.Value = 5;

myParam.CoderInfo.StorageClass = 'ExportedGlobal';

Alternatively, using the Model Explorer, you can create a tunable parameter and set
Storage Class to ExportedGlobal. See “Using the Model Explorer to Create Data
Objects”.

2 In your Simulink design, in a Gain or Constant block, enter an expression that uses
the tunable parameter:

• As the Constant value in a Constant block.
• As the Gain parameter in a Gain block.

 Generate Code For Tunable Parameters

9-5

For example, you can use an expression such as 2*myParam or myParam+3.

Generated Code For a Tunable Parameter

The following VHDL code is an example of code that HDL Coder generates for a Gain
block with its Gain field set to a tunable parameter, myParam:

ENTITY s IS

 PORT(In1 : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En5

 myParam : IN std_logic_vector(15 DOWNTO 0); -- sfix16_En5

 Out1 : OUT std_logic_vector(31 DOWNTO 0) -- sfix32_En10

);

END s;

ARCHITECTURE rtl OF s IS

 -- Signals

 SIGNAL myParam_signed : signed(15 DOWNTO 0); -- sfix16_En5

 SIGNAL In1_signed : signed(15 DOWNTO 0); -- sfix16_En5

 SIGNAL Gain_out1 : signed(31 DOWNTO 0); -- sfix32_En10

BEGIN

 myParam_signed <= signed(myParam);

 In1_signed <= signed(In1);

 Gain_out1 <= myParam_signed * In1_signed;

 Out1 <= std_logic_vector(Gain_out1);

END rtl;

Limitations

You cannot use HDL cosimulation with a DUT that uses tunable parameters in Gain or
Constant blocks.

9-6

10

Code Generation Options in the HDL
Coder Dialog Boxes

• “Set HDL Code Generation Options” on page 10-2
• “HDL Code Generation Pane: General” on page 10-8
• “HDL Code Generation Pane: Global Settings” on page 10-16
• “HDL Code Generation Pane: Test Bench” on page 10-73
• “HDL Code Generation Pane: EDA Tool Scripts” on page 10-92

10 Code Generation Options in the HDL Coder Dialog Boxes

10-2

Set HDL Code Generation Options

In this section...

“HDL Code Generation Options in the Configuration Parameters Dialog Box” on page
10-2
“HDL Code Generation Options in the Model Explorer” on page 10-3
“Code Menu” on page 10-4
“HDL Code Options in the Block Context Menu” on page 10-5
“The HDL Block Properties Dialog Box” on page 10-6

HDL Code Generation Options in the Configuration Parameters Dialog
Box

The following figure shows the top-level HDL Code Generation pane in the
Configuration Parameters dialog box. To open this dialog box, select Simulation >
Model Configuration Parameters in the Simulink window. Then select HDL Code
Generation from the list on the left.

 Set HDL Code Generation Options

10-3

Note: When the HDL Code Generation pane of the Configuration Parameters dialog
box appears, clicking the Help button displays general help for the Configuration
Parameters dialog box.

HDL Code Generation Options in the Model Explorer

The following figure shows the top-level HDL Code Generation pane as displayed in
the Contents pane of the Model Explorer.

To view this dialog box:

1 Open the Model Explorer.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-4

2 Select your model's active configuration set in the Model Hierarchy tree on the left.
3 Select HDL Code Generation from the list in the Contents pane.

Code Menu

The Code > HDL Code submenu provides shortcuts to the HDL code generation options.
You can also use this submenu to initiate code generation.

Options include:

• HDL Workflow Advisor: Open the HDL Workflow Advisor.
• Options: Open the HDL Code Generation pane in the Configuration Parameters

dialog box.
• Generate HDL: Initiate HDL code generation; equivalent to the Generate button in

the Configuration Parameters dialog box or Model Explorer.
• Generate Test Bench: Initiate test bench code generation; equivalent to the

Generate Test Bench button in the Configuration Parameters dialog box or Model

 Set HDL Code Generation Options

10-5

Explorer. If you do not select a subsystem in the Generate HDL for menu, the
Generate Test Bench menu option is not available.

• Add HDL Coder Configuration to Model or Remove HDL Coder
Configuration from Model: The HDL configuration component is internal data
that HDL Coder creates and attaches to a model. This component lets you view the
HDL Code Generation pane in the Configurations Parameters dialog box, and use
the HDL Code Generation pane to set HDL code generation options. If you need
to add or remove the HDL Code Generation configuration component to or from a
model, use this option to do so. For more information, see “Add or Remove the HDL
Configuration Component” on page 15-41.

HDL Code Options in the Block Context Menu

When you right-click a block that HDL Coder supports, the context menu for the block
includes an HDL Code submenu. The coder enables items in the submenu according to:

• The block type: for subsystems, the menu enables some options that are specific to
subsystems.

• Whether or not code and traceability information has been generated for the block or
subsystem.

The following summary describes the HDL Code submenu options.

Option Description Availability

Check Subsystem
Compatibility

Runs the HDL compatibility
checker (checkhdl) on the
subsystem.

Available only for subsystems.

Generate HDL for
Subsystem

Runs the HDL code generator
(makehdl) and generates code
for the subsystem.

Available only for subsystems.

HDL Coder
Properties

Opens the Configuration
Parameters dialog box, with the
top-level HDL Code Generation
pane selected.

Available for blocks or
subsystems.

HDL Block
Properties

Opens a block properties
dialog box for the block or
subsystem. See “Set and View

Available for blocks or
subsystems.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-6

Option Description Availability

HDL Block Parameters” for
more information.

HDL Workflow
Advisor

Opens the HDL Workflow
Advisor for the subsystem.

Available only for subsystems.

Navigate to Code Activates the HTML code
generation report window,
displaying the beginning of
the code generated for the
selected block or subsystem.
See “Tracing from Model to
Code” on page 15-20 for
more information.

Enabled when both code and a
traceability report have been
generated for the block or
subsystem.

The HDL Block Properties Dialog Box

HDL Coder provides selectable alternate block implementations for many block types.
Each implementation is optimized for different characteristics, such as speed or chip
area. The HDL Properties dialog box lets you choose the implementation for a selected
block.

Most block implementations support a number of implementation parameters that let you
control further details of code generation for the block. The HDL Properties dialog box
lets you set implementation parameters for a block.

The following figure shows the HDL Properties dialog box for a block.

 Set HDL Code Generation Options

10-7

There are a number of ways to specify implementations and implementation parameters
for individual blocks or groups of blocks. See “Set and View HDL Block Parameters” for
detailed information.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-8

HDL Code Generation Pane: General

In this section...

“HDL Code Generation Top-Level Pane Overview” on page 10-9
“Generate HDL for” on page 10-9
“Language” on page 10-10
“Folder” on page 10-10
“Generate HDL code” on page 10-11
“Generate validation model” on page 10-11
“Generate traceability report” on page 10-12

 HDL Code Generation Pane: General

10-9

In this section...

“Generate resource utilization report” on page 10-13
“Generate optimization report” on page 10-14
“Generate model Web view” on page 10-15

HDL Code Generation Top-Level Pane Overview

The top-level HDL Code Generation pane contains buttons that initiate code
generation and compatibility checking, and sets code generation parameters.

Buttons in the HDL Code Generation Top-Level Pane

The buttons in the HDL Code Generation pane perform functions related to code
generation. These buttons are:
Generate: Initiates code generation for the system selected in the Generate HDL for
menu. See also “makehdl”.
Run Compatibility Checker: Invokes the compatibility checker to examine the system
selected in the Generate HDL for menu for compatibility problems. See also “checkhdl”.
Browse: Lets you navigate to and select the target folder to which generated code and
script files are written. The path to the target folder is entered into the Folder field.
Restore Factory Defaults: Sets model parameters to their default values.

Generate HDL for

Select the subsystem or model from which code is generated. The list includes the path to
the root model and to subsystems in the model.

Settings

Default: The root model is selected.

Command-Line Information

Pass in the path to the model or subsystem for which code is to be generated as the first
argument to makehdl.

See Also

“makehdl”

10 Code Generation Options in the HDL Coder Dialog Boxes

10-10

Language

Select the language (VHDL or Verilog) in which code is generated. The selected language
is referred to as the target language.

Settings

Default: VHDL

VHDL

Generate VHDL code.
Verilog

Generate Verilog code.

Command-Line Information
Property: TargetLanguage
Type: string
Value: 'VHDL' | 'Verilog'
Default: 'VHDL'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “TargetLanguage”
• “makehdl”

Folder

Enter a path to the folder into which code is generated. Alternatively, click Browse to
navigate to and select a folder. The selected folder is referred to as the target folder.

Settings

Default: The default target folder is a subfolder of your working folder, named hdlsrc.

Command-Line Information
Property: TargetDirectory
Type: string

 HDL Code Generation Pane: General

10-11

Value: A valid path to your target folder
Default: 'hdlsrc'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “TargetDirectory”
• “makehdl”

Generate HDL code

Enable or disable HDL code generation for the model.

Settings

Default: On

 On
Generate HDL code.

 Off
Do not generate HDL code.

Command-Line Information
Property: GenerateHDLCode
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

GenerateHDLCode

Generate validation model

10 Code Generation Options in the HDL Coder Dialog Boxes

10-12

Enable or disable generation of a validation model that verifies the functional
equivalence of the original model with the generated model. The validation model
contains both the original and the generated DUT models.

If you enable generation of a validation model, also enable delay balancing to keep
the generated DUT model synchronized with the original DUT model. Validation fails
when there is a mismatch between delays in the original DUT model and delays in the
generated DUT model.

Settings

Default: Off

 On
Generate the validation model.

 Off
Do not generate the validation model.

Command-Line Information
Property: GenerateValidationModel
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“GenerateValidationModel”, “BalanceDelays”

Generate traceability report

Enable or disable generation of an HTML code generation report with hyperlinks from
code to model and model to code.

Settings

Default: Off

 HDL Code Generation Pane: General

10-13

 On
Create and display an HTML code generation report. See “ Create and Use Code
Generation Reports”.

 Off
Do not create an HTML code generation report.

Command-Line Information
Property: Traceability
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Traceability”

Generate resource utilization report

Enable or disable generation of an HTML resource utilization report

Settings

Default: Off

 On
Create and display an HTML resource utilization report. The report contains
information about the number of hardware resources (multipliers, adders, registers)
used in the generated HDL code. The report includes hyperlinks to the referenced
blocks in the model. See “ Create and Use Code Generation Reports”.

 Off
Do not create an HTML resource utilization report.

Command-Line Information
Property: ResourceReport

10 Code Generation Options in the HDL Coder Dialog Boxes

10-14

Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ResourceReport”

Generate optimization report

Enable or disable generation of an HTML optimization report

Settings

Default: Off

 On
Create and display an HTML optimization report. The report contains information
about the results of streaming, sharing, and distributed pipelining optimizations
that were implemented in the generated code. The report includes hyperlinks back
to referenced blocks, subsystems, or validation models.See “ Create and Use Code
Generation Reports”.

 Off
Do not create an HTML optimization report.

Command-Line Information
Property: OptimizationReport
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“OptimizationReport”

 HDL Code Generation Pane: General

10-15

Generate model Web view

Include the model Web view in the code generation report to navigate between the code
and model within the same window. You can share your model and generated code
outside of the MATLAB environment. You must have a Simulink Report Generator™
license to include a “Web view” of the model in the code generation report.

Settings

Default: Off

 On
Include model Web view in the code generation report.

 Off
Omit model Web view in the code generation report.

Command-Line Information
Parameter: GenerateWebview
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

“Web View of Model in Code Generation Report”

10 Code Generation Options in the HDL Coder Dialog Boxes

10-16

HDL Code Generation Pane: Global Settings

In this section...

“Global Settings Overview” on page 10-18
“Reset type” on page 10-19
“Reset asserted level” on page 10-19
“Clock input port” on page 10-20
“Clock enable input port” on page 10-21
“Reset input port” on page 10-21
“Clock inputs” on page 10-22
“Oversampling factor” on page 10-23
“Clock edge” on page 10-24
“Comment in header” on page 10-24
“Verilog file extension” on page 10-25

 HDL Code Generation Pane: Global Settings

10-17

In this section...

“VHDL file extension” on page 10-25
“Entity conflict postfix” on page 10-26
“Package postfix” on page 10-27
“Reserved word postfix” on page 10-28
“Module name prefix” on page 10-28
“Split entity and architecture” on page 10-29
“Split entity file postfix” on page 10-30
“Split arch file postfix” on page 10-31
“Clocked process postfix” on page 10-31
“Enable prefix” on page 10-32
“Pipeline postfix” on page 10-33
“Complex real part postfix” on page 10-33
“Complex imaginary part postfix” on page 10-34
“Input data type” on page 10-34
“Output data type” on page 10-35
“Clock enable output port” on page 10-36
“Use trigger signal as clock” on page 10-37
“Balance delays” on page 10-38
“Distributed pipelining priority” on page 10-38
“Hierarchical distributed pipelining” on page 10-39
“Preserve design delays” on page 10-40
“Clock-rate pipelining” on page 10-41
“Optimize timing controller” on page 10-41
“Minimize clock enables” on page 10-42
“RAM mapping threshold (bits)” on page 10-44
“Max oversampling” on page 10-45
“Max computation latency” on page 10-46
“Represent constant values by aggregates” on page 10-47
“Use “rising_edge/falling_edge” style for registers” on page 10-48

10 Code Generation Options in the HDL Coder Dialog Boxes

10-18

In this section...

“Loop unrolling” on page 10-48
“Use Verilog `timescale directives” on page 10-49
“Inline VHDL configuration” on page 10-50
“Concatenate type safe zeros” on page 10-51
“Emit time/date stamp in header” on page 10-52
“Scalarize vector ports” on page 10-53
“Minimize intermediate signals” on page 10-54
“Include requirements in block comments” on page 10-55
“Inline MATLAB Function block code” on page 10-55
“Generate parameterized HDL code from masked subsystem” on page 10-56
“Initialize all RAM blocks” on page 10-57
“RAM Architecture” on page 10-58
“HDL coding standard” on page 10-58
“Do not show passing rules in coding standard report” on page 10-59
“Check for duplicate names” on page 10-60
“Check for HDL keywords in design names” on page 10-61
“Check for initial statements that set RAM initial values” on page 10-62
“Check module, instance, and entity name length” on page 10-63
“Check signal, port, and parameter name length” on page 10-64
“Minimize use of variables” on page 10-65
“Check if-else statement chain length” on page 10-66
“Check if-else statement nesting depth” on page 10-67
“Check multiplier width” on page 10-68
“Check for non-integer constants” on page 10-69
“Check line length” on page 10-70
“Highlight feedback loops inhibiting delay balancing and optimizations” on page
10-71
“Feedback loop highlighting script file name” on page 10-72

 HDL Code Generation Pane: Global Settings

10-19

Global Settings Overview

The Global Settings pane enables you to specify detailed characteristics of the
generated code, such as HDL element naming and whether certain optimizations are
applied.

Reset type

Specify whether to use asynchronous or synchronous reset logic when generating HDL
code for registers.

Settings

Default: Asynchronous

Asynchronous

Use asynchronous reset logic.
Synchronous

Use synchronous reset logic.

Command-Line Information
Property: ResetType
Type: string
Value: 'async' | 'sync'
Default: 'async'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ResetType”

Reset asserted level

Specify whether the asserted (active) level of reset input signal is active-high or active-
low.

Settings

Default: Active-high

10 Code Generation Options in the HDL Coder Dialog Boxes

10-20

Active-high

Asserted (active) level of reset input signal is active-high (1).
Active-low

Asserted (active) level of reset input signal is active-low (0).

Command-Line Information
Property: ResetAssertedLevel
Type: string
Value: 'active-high' | 'active-low'
Default: 'active-high'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ResetAssertedLevel”

Clock input port

Specify the name for the clock input port in generated HDL code.

Settings

Default: clk

Enter a string value to be used as the clock signal name in generated HDL code. If
you specify a string that is a VHDL or Verilog reserved word, the code generator
appends a reserved word postfix string to form a valid VHDL or Verilog identifier. For
example, if you specify the reserved word signal, the resulting name string would be
signal_rsvd.

Command-Line Information
Property: ClockInputPort
Type: string
Value: A valid identifier in the target language
Default: 'clk'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 HDL Code Generation Pane: Global Settings

10-21

See Also

“ClockInputPort”

Clock enable input port

Specify the name for the clock enable input port in generated HDL code.

Settings

Default: clk_enable

Enter a string value to be used as the clock enable input port name in generated HDL
code. If you specify a string that is a VHDL or Verilog reserved word, the code generator
appends a reserved word postfix string to form a valid VHDL or Verilog identifier. For
example, if you specify the reserved word signal, the resulting name string would be
signal_rsvd.

Tip

The clock enable input signal is asserted active-high (1). Thus, the input value must be
high for the generated entity's registers to be updated.

Command-Line Information
Property: ClockEnableInputPort
Type: string
Value: A valid identifier in the target language
Default: 'clk_enable'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ClockEnableInputPort”

Reset input port

Enter the name for the reset input port in generated HDL code.

Settings

Default: reset

10 Code Generation Options in the HDL Coder Dialog Boxes

10-22

Enter a string value to be used as the reset input port name in generated HDL code.
If you specify a string that is a VHDL or Verilog reserved word, the code generator
appends a reserved word postfix string to form a valid VHDL or Verilog identifier. For
example, if you specify the reserved word signal, the resulting name string would be
signal_rsvd.

Tip

If the reset asserted level is set to active-high, the reset input signal is asserted active-
high (1) and the input value must be high (1) for the entity's registers to be reset. If the
reset asserted level is set to active-low, the reset input signal is asserted active-low (0)
and the input value must be low (0) for the entity's registers to be reset.

Command-Line Information
Property: ResetInputPort
Type: string
Value: A valid identifier in the target language
Default: 'reset'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ResetInputPort”

Clock inputs

Specify generation of single or multiple clock inputs.

Settings

Default: Single

Single

Generates a single clock input for the DUT. If the DUT is multirate, the input clock
is the master clock rate, and a timing controller is synthesized to generate additional
clocks as required.

Multiple

Generates a unique clock for each Simulink rate in the DUT. The number of timing
controllers generated depends on the contents of the DUT.

 HDL Code Generation Pane: Global Settings

10-23

Command-Line Information
Property: ClockInputs
Type: string
Value: 'Single' | 'Multiple'
Default: 'Single'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ClockInputs”

Oversampling factor

Specify frequency of global oversampling clock as a multiple of the model's base rate.

Settings

Default: 1.

Oversampling factor specifies the oversampling factor of a global oversampling clock.
The oversampling factor expresses the desired rate of the global oversampling clock as
a multiple of your model's base rate. By default, HDL Coder does not generate a global
oversampling clock.

If you want to generate a global oversampling clock:

• The Oversampling factor must be an integer greater than or equal to 1.
• In a multirate DUT, other rates in the DUT must divide evenly into the global

oversampling rate.

Command-Line Information
Property: Oversampling
Type: int
Value: integer greater than or equal to 1
Default: 1

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-24

See Also
Generating a Global Oversampling Clock
Oversampling

Clock edge

Specify active clock edge.

Settings

Default: Rising.

Rising
The rising edge, or 0-to-1 transition, is the active clock edge.

Falling
The falling edge, or 1-to-0 transition, is the active clock edge.

Command-Line Information
Property: ClockEdge
Type: string
Value: 'Rising' | 'Falling'
Default: 'Rising'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ClockEdge”

Comment in header

Specify comment lines in header of generated HDL and test bench files.

Settings

Default: None

Text entered in this field generates a comment line in the header of generated model
and test bench files. The code generator adds leading comment characters for the target

 HDL Code Generation Pane: Global Settings

10-25

language. When newlines or linefeeds are included in the string, the code generator emits
single-line comments for each newline.

Command-Line Information
Property: UserComment
Type: string

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“UserComment”

Verilog file extension

Specify the file name extension for generated Verilog files.

Settings

Default: .v

This field specifies the file name extension for generated Verilog files.

Dependency

This option is enabled when the target language (specified by the Language option) is
Verilog.

Command-Line Information
Property: VerilogFileExtension
Type: string
Default: '.v'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“VerilogFileExtension”

VHDL file extension

10 Code Generation Options in the HDL Coder Dialog Boxes

10-26

Specify the file name extension for generated VHDL files.

Settings

Default: .vhd

This field specifies the file name extension for generated VHDL files.

Dependencies

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: VHDLFileExtension
Type: string
Default: '.vhd'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“VHDLFileExtension”

Entity conflict postfix

Specify the string used to resolve duplicate VHDL entity or Verilog module names in
generated code.

Settings

Default: _block

The specified postfix resolves duplicate VHDL entity or Verilog module names. For
example, in the default case, if HDL Coder detects two entities with the name MyFilt,
the coder names the first entity MyFilt and the second instance MyFilt_entity.

Command-Line Information
Property: EntityConflictPostfix
Type: string

 HDL Code Generation Pane: Global Settings

10-27

Value: A valid string in the target language
Default: '_block'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“EntityConflictPostfix”

Package postfix

Specify a string to append to the model or subsystem name to form name of a package
file.

Settings

Default: _pkg

HDL Coder applies this option only if a package file is required for the design.

Dependency

This option is enabled when:

The target language (specified by the Language option) is VHDL.

The target language (specified by the Language option) is Verilog, and the Multi-file
test bench option is selected.

Command-Line Information
Property: PackagePostfix
Type: string
Value: A string that is legal in a VHDL package file name
Default: '_pkg'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“PackagePostfix”

10 Code Generation Options in the HDL Coder Dialog Boxes

10-28

Reserved word postfix

Specify a string to append to value names, postfix values, or labels that are VHDL or
Verilog reserved words.

Settings

Default: _rsvd

The reserved word postfix is applied to identifiers (for entities, signals, constants, or
other model elements) that conflict with VHDL or Verilog reserved words. For example, if
your generating model contains a signal named mod, HDL Coder adds the postfix _rsvd
to form the name mod_rsvd.

Command-Line Information
Property: ReservedWordPostfix
Type: string
Default: '_rsvd'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ReservedWordPostfix”

Module name prefix

Specify a prefix for every module or entity name in the generated HDL code.

Settings

Default: ''

Specify a prefix for every module or entity name in the generated HDL code. HDL Coder
also applies this prefix to generated script file names.

You can specify the module name prefix to avoid name collisions if you plan to instantiate
the generated HDL code multiple times in a larger system.

Command-Line Information
Property: ModulePrefix

 HDL Code Generation Pane: Global Settings

10-29

Type: string
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ModulePrefix

Split entity and architecture

Specify whether generated VHDL entity and architecture code is written to a single
VHDL file or to separate files.

Settings

Default: Off

 On
VHDL entity and architecture definitions are written to separate files.

 Off
VHDL entity and architecture code is written to a single VHDL file.

Tips

The names of the entity and architecture files derive from the base file name (as specified
by the generating model or subsystem name). By default, postfix strings identifying the
file as an entity (_entity) or architecture (_arch) are appended to the base file name.
You can override the default and specify your own postfix string.

For example, instead of all generated code residing in MyFIR.vhd, you can specify that
the code reside in MyFIR_entity.vhd and MyFIR_arch.vhd.

Dependencies

This option is enabled when the target language (specified by the Language option) is
Verilog.

Selecting this option enables the following parameters:

10 Code Generation Options in the HDL Coder Dialog Boxes

10-30

• Split entity file postfix
• Split architecture file postfix

Command-Line Information
Property: SplitEntityArch
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“SplitEntityArch”

Split entity file postfix

Enter a string to be appended to the model name to form the name of a generated VHDL
entity file.

Settings

Default: _entity

Dependencies

This parameter is enabled by Split entity and architecture.

Command-Line Information
Property: SplitEntityFilePostfix
Type: string
Default: '_entity'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“SplitEntityFilePostfix”

 HDL Code Generation Pane: Global Settings

10-31

Split arch file postfix

Enter a string to be appended to the model name to form the name of a generated VHDL
architecture file.

Settings

Default: _arch

Dependency

This parameter is enabled by Split entity and architecture.

Command-Line Information
Property: SplitArchFilePostfix
Type: string
Default: '_arch'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“SplitArchFilePostfix”

Clocked process postfix

Specify a string to append to HDL clock process names.

Settings

Default: _process

HDL Coder uses process blocks for register operations. The label for each of these blocks
is derived from a register name and the postfix _process. For example, the coder
derives the label delay_pipeline_process from the register name delay_pipeline
and the default postfix string _process.

Command-Line Information
Property: ClockProcessPostfix
Type: string
Default: '_process'

10 Code Generation Options in the HDL Coder Dialog Boxes

10-32

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ClockProcessPostfix”

Enable prefix

Specify the base name string for internal clock enables and other flow control signals in
generated code.

Settings

Default: 'enb'

Where only a single clock enable is generated, Enable prefix specifies the signal name
for the internal clock enable signal.

In some cases, multiple clock enables are generated (for example, when a cascade block
implementation for certain blocks is specified). In such cases, Enable prefix specifies
a base signal name for the first clock enable that is generated. For other clock enable
signals, numeric tags are appended to Enable prefix to form unique signal names. For
example, the following code fragment illustrates two clock enables that were generated
when Enable prefix was set to 'test_clk_enable':

COMPONENT mysys_tc

 PORT(clk : IN std_logic;

 reset : IN std_logic;

 clk_enable : IN std_logic;

 test_clk_enable : OUT std_logic;

 test_clk_enable_5_1_0 : OUT std_logic

);

 END COMPONENT;

Command-Line Information
Property: EnablePrefix
Type: string
Default: 'enb'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 HDL Code Generation Pane: Global Settings

10-33

See Also

“EnablePrefix”

Pipeline postfix

Specify string to append to names of input or output pipeline registers generated for
pipelined block implementations.

Settings

Default: '_pipe'

You can specify a generation of input and/or output pipeline registers for selected blocks.
The Pipeline postfix option defines a string that HDL Coder appends to names of input
or output pipeline registers.

Command-Line Information
Property: PipelinePostfix
Type: string
Default: '_pipe'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“PipelinePostfix”

Complex real part postfix

Specify string to append to real part of complex signal names.

Settings

Default: '_re'

Enter a string to be appended to the names generated for the real part of complex
signals.

Command-Line Information
Property: ComplexRealPostfix

10 Code Generation Options in the HDL Coder Dialog Boxes

10-34

Type: string
Default: '_re'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ComplexRealPostfix”

Complex imaginary part postfix

Specify string to append to imaginary part of complex signal names.

Settings

Default: '_im'

Enter a string to be appended to the names generated for the imaginary part of complex
signals.

Command-Line Information
Property: ComplexImagPostfix
Type: string
Default: '_im'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ComplexImagPostfix”

Input data type

Specify the HDL data type for the model's input ports.

Settings

For VHDL, the options are:

Default: std_logic_vector

 HDL Code Generation Pane: Global Settings

10-35

std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR.
signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED.

For Verilog, the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire'. Therefore, Input data
type is disabled when the target language is Verilog.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: InputType
Type: string
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: (for VHDL) 'std_logic_vector'
(for Verilog) 'wire'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“InputType”

Output data type

Specify the HDL data type for the model's output ports.

Settings

For VHDL, the options are:

Default: Same as input data type

10 Code Generation Options in the HDL Coder Dialog Boxes

10-36

Same as input data type

Specifies that output ports have the same type specified by Input data type.
std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR.
signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED.

For Verilog, the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire'. Therefore, Output data
type is disabled when the target language is Verilog.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: OutputType
Type: string
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: If the property is left unspecified, output ports have the same type specified by
InputType.

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“OutputType”

Clock enable output port

Specify the name for the generated clock enable output.

Settings

Default: ce_out

 HDL Code Generation Pane: Global Settings

10-37

A clock enable output is generated when the design requires one.

Command-Line Information
Property: ClockEnableOutputPort
Type: string
Default: 'ce_out'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ClockEnableOutputPort”

Use trigger signal as clock

Enable to use trigger input signal as clock in generated HDL code.

Settings

Default: Off

 On
For triggered subsystems, use the trigger input signal as a clock in the generated
HDL code.

 Off
For triggered subsystems, do not use the trigger input signal as a clock in the
generated HDL code.

Command-Line Information
Property: TriggerAsClock
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

TriggerAsClock

10 Code Generation Options in the HDL Coder Dialog Boxes

10-38

Balance delays

Enable delay balancing.

Settings

Default: On

 On
If HDL Coder detects introduction of new delays along one path, matching delays are
inserted on the other paths. When delay balancing is enabled, the generated model is
functionally equivalent to the original model.

 Off
The latency along signal paths might not be balanced, and the generated model
might not be functionally equivalent to the original model.

Command-Line Information
Property: BalanceDelays
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Delay Balancing ”

Distributed pipelining priority

Specify priority for distributed pipelining algorithm.

Settings

Default: Numerical Integrity

Numerical Integrity

Prioritize numerical integrity when distributing pipeline registers.

 HDL Code Generation Pane: Global Settings

10-39

This option uses a conservative retiming algorithm that does not move registers
across a component if the functional equivalence to the original design is unknown.

Performance

Prioritize performance over numerical integrity.

Use this option if your design requires a higher clock frequency and the Simulink
behavior does not need to strictly match the generated code behavior. This option
uses a more aggressive retiming algorithm that moves registers across a component
even if the modified design’s functional equivalence to the original design is
unknown.

Command-Line Information
Property: DistributedPipeliningPriority
Type: string
Value: 'NumericalIntegrity' | 'Performance'
Default: 'NumericalIntegrity'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• DistributedPipeliningPriority

• “DistributedPipelining”

Hierarchical distributed pipelining

Specify that retiming be applied across a subsystem hierarchy.

Settings

Default: Off

 On
Enable retiming across a subsystem hierarchy. HDL Coder applies retiming
hierarchically down, until it reaches a subsystem where DistributedPipelining is
off.

 Off
Distribute pipelining only within a subsystem.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-40

Command-Line Information
Property: HierarchicalDistPipelining
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• HierarchicalDistPipelining

• “DistributedPipelining”

Preserve design delays

Enable to prevent distributed pipelining from moving design delays.

Settings

Default: Off

 On
Prevent distributed pipelining from moving design delays.

 Off
Do not prevent distributed pipelining from moving design delays.

Command-Line Information
Property: PreserveDesignDelays
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• PreserveDesignDelays

• “DistributedPipelining”

 HDL Code Generation Pane: Global Settings

10-41

Clock-rate pipelining

Insert pipeline registers at the clock rate instead of the data rate for multi-cycle paths in
your design.

Settings

Default: On

 On
Insert pipeline registers at clock rate for multi-cycle paths.

 Off
Insert pipeline registers at data rate for multi-cycle paths.

Command-Line Information
Property: ClockRatePipelining
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• ClockRatePipelining

• “Clock-Rate Pipelining”

Optimize timing controller

Optimize timing controller entity for speed and code size by implementing separate
counters per rate.

Settings

Default: On

 On

10 Code Generation Options in the HDL Coder Dialog Boxes

10-42

HDL Coder generates multiple counters (one counter for each rate in the model) in
the timing controller code. The benefit of this optimization is that it generates faster
logic, and the size of the generated code is usually much smaller.

 Off
The coder generates a timing controller that uses one counter to generate all rates in
the model.

Tip

A timing controller code file is generated if required by the design, for example:

• When code is generated for a multirate model
• When a cascade block implementation for certain blocks is specified

This file contains a module defining timing signals (clock, reset, external clock enable
inputs and clock enable output) in a separate entity or module. In a multirate model, the
timing controller entity generates the required rates from a single master clock using one
or more counters and multiple clock enables.

The timing controller name derives from the name of the subsystem that is
selected for code generation (the DUT), and the current value of the string property
TimingControllerPostfix. For example, if the name of your DUT is my_test, in the
default case the coder adds the TimingControllerPostfix _tc to form the timing
controller name my_test_tc.

Command-Line Information
Property: OptimizeTimingController
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

OptimizeTimingController

Minimize clock enables

 HDL Code Generation Pane: Global Settings

10-43

Omit generation of clock enable logic for single-rate designs.

Settings

Default: Off

 On
For single-rate models, omit generation of clock enable logic wherever possible. The
following VHDL code example does not define or examine a clock enable signal. When
the clock signal (clk) goes high, the current signal value is output.

Unit_Delay_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay_out1 <= to_signed(0, 32);

 ELSIF clk'EVENT AND clk = '1' THEN

 Unit_Delay_out1 <= In1_signed;

 END IF;

 END PROCESS Unit_Delay_process;

 Off
Generate clock enable logic. The following VHDL code extract represents a register
with a clock enable (enb)

Unit_Delay_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay_out1 <= to_signed(0, 32);

 ELSIF clk'EVENT AND clk = '1' THEN

 IF enb = '1' THEN

 Unit_Delay_out1 <= In1_signed;

 END IF;

 END IF;

 END PROCESS Unit_Delay_process;

Exceptions

In some cases, HDL Coder emits clock enables even when Minimize clock enables is
selected. These cases are:

• Registers inside Enabled, State-Enabled, and Triggered subsystems.
• Multirate models.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-44

• The coder always emits clock enables for the following blocks:

• commseqgen2/PN Sequence Generator
• dspsigops/NCO

Note: HDL support for the NCO block will be removed in a future release. Use the
NCO HDL Optimized block instead.

• dspsrcs4/Sine Wave
• hdldemolib/HDL FFT
• built-in/DiscreteFir
• dspmlti4/CIC Decimation
• dspmlti4/CIC Interpolation
• dspmlti4/FIR Decimation
• dspmlti4/FIR Interpolation
• dspadpt3/LMS Filter
• dsparch4/Biquad Filter

Command-Line Information
Property: MinimizeClockEnables
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

MinimizeClockEnables

RAM mapping threshold (bits)

Specify the minimum RAM size for mapping to block RAMs instead of to registers.

Settings

Default: 256

 HDL Code Generation Pane: Global Settings

10-45

The RAM mapping threshold must be an integer greater than or equal to zero. HDL
Coder uses the threshold to determine whether or not to map the following elements to
block RAMs instead of to registers:

• Delay blocks
• Persistent arrays in MATLAB Function blocks

Command-Line Information
Property: RAMMappingThreshold
Type: integer
Value: integer greater than or equal to 0
Default: 256

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• RAMMappingThreshold

• “UseRAM”
• “MapPersistentVarsToRAM”

Max oversampling

Specify the maximum oversampling ratio. The oversampling ratio is the sample rate
after optimizations divided by the original model sample rate.

Use Max oversampling with Max computation latency to prevent or reduce
overclocking by constraining resource sharing and streaming optimizations.

Settings

Default: 0

0
Do not set a limit on the maximum sample rate.

1
Do not allow oversampling.

N, where N is an integer greater than 1
Allow oversampling up to N times the original model sample rate.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-46

Command-Line Information
Property: MaxOversampling
Type: integer
Value: integer greater than or equal to 0
Default: 0

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• MaxOversampling

• MaxComputationLatency

Max computation latency

Specify the maximum number of time steps for which your inputs are guaranteed to be
stable.

Use Max computation latency with Max oversampling to prevent or reduce
overclocking by constraining resource sharing and streaming optimizations.

Settings

Default: 1

1
DUT input data can change every cycle.

N, where N is an integer greater than 1
DUT input data can change every N cycles.

Command-Line Information
Property: MaxComputationLatency
Type: integer
Value: positive integer
Default: 1

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 HDL Code Generation Pane: Global Settings

10-47

See Also

• MaxComputationLatency

• MaxOversampling

Represent constant values by aggregates

Specify whether constants in VHDL code are represented by aggregates, including
constants that are less than 32 bits.

Settings

Default: Off

 On
HDL Coder represents constants as aggregates. The following VHDL constant
declarations show a scalar less than 32 bits represented as an aggregate:

GainFactor_gainparam <= (14 => '1', OTHERS => '0');

 Off
The coder represents constants less than 32 bits as scalars and constants greater
than or equal to 32 bits as aggregates. The following VHDL code was generated by
default for a value less than 32 bits:

GainFactor_gainparam <= to_signed(16384, 16);

Dependencies

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: UseAggregatesForConst
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-48

See Also

UseAggregatesForConst

Use “rising_edge/falling_edge” style for registers

Specify whether generated code uses the VHDL rising_edge or falling_edge
function to detect clock transitions.

Settings

Default: Off

 On
Generated code uses the VHDL rising_edge or falling_edge function.

 Off
Generated code uses the 'event syntax.

Dependencies

This option is enabled when the target language is VHDL.

Command-Line Information
Property: UseRisingEdge
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

UseRisingEdge

Loop unrolling

Specify whether VHDL FOR and GENERATE loops are unrolled and omitted from
generated VHDL code.

 HDL Code Generation Pane: Global Settings

10-49

Settings

Default: Off

 On
Unroll and omit FOR and GENERATE loops from the generated VHDL code. (In Verilog
code, loops are always unrolled.)

 Off
Include FOR and GENERATE loops in the generated VHDL code.

Tip

If you are using an electronic design automation (EDA) tool that does not support
GENERATE loops, select this option to omit loops from your generated VHDL code.

Dependency

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: LoopUnrolling
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

LoopUnrolling

Use Verilog `timescale directives

Specify use of compiler `timescale directives in generated Verilog code.

Settings

Default: On

10 Code Generation Options in the HDL Coder Dialog Boxes

10-50

 On
Use compiler `timescale directives in generated Verilog code.

 Off
Suppress the use of compiler `timescale directives in generated Verilog code.

Tip

The `timescale directive provides a way of specifying different delay values for
multiple modules in a Verilog file. This setting does not affect the generated test bench.

Dependency

This option is enabled when the target language (specified by the Language option) is
Verilog.

Command-Line Information
Property: UseVerilogTimescale
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

UseVerilogTimescale

Inline VHDL configuration

Specify whether generated VHDL code includes inline configurations.

Settings

Default: On

 On
Include VHDL configurations in files that instantiate a component.

 Off

 HDL Code Generation Pane: Global Settings

10-51

Suppress the generation of configurations and require user-supplied external
configurations. Use this setting if you are creating your own VHDL configuration
files.

Tip

HDL configurations can be either inline with the rest of the VHDL code for an entity or
external in separate VHDL source files. By default, HDL Coder includes configurations
for a model within the generated VHDL code. If you are creating your own VHDL
configuration files, suppress the generation of inline configurations.

Dependencies

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: InlineConfigurations
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

InlineConfigurations

Concatenate type safe zeros

Specify use of syntax for concatenated zeros in generated VHDL code.

Settings

Default: On

 On
Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically, this syntax
is preferred.

 Off

10 Code Generation Options in the HDL Coder Dialog Boxes

10-52

Use the syntax "000000..." for concatenated zeros. This syntax can be easier to
read and more compact, but it can lead to ambiguous types.

Dependencies

This option is enabled when the target language (specified by the Language option) is
VHDL.

Command-Line Information
Property: SafeZeroConcat
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

SafeZeroConcat

Emit time/date stamp in header

Specify whether or not to include time and date information in the generated HDL file
header.

Settings

Default: On

 On
Include time/date stamp in the generated HDL file header.

 -- --

 --

 -- File Name: hdlsrc\symmetric_fir.vhd

 -- Created: 2011-02-14 07:21:36

 --

 Off
Omit time/date stamp in the generated HDL file header.

 HDL Code Generation Pane: Global Settings

10-53

 -- --

 --

 -- File Name: hdlsrc\symmetric_fir.vhd

 --

By omitting the time/date stamp in the file header, you can more easily determine if
two HDL files contain identical code. You can also avoid redundant revisions of the
same file when checking in HDL files to a source code management (SCM) system.

Command-Line Information
Property: DateComment
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

DateComment

Scalarize vector ports

Flatten vector ports into a structure of scalar ports in VHDL code

Settings

Default: Off

 On
When generating code for a vector port, generate a structure of scalar ports.

 Off
When generating code for a vector port, generate a type definition and port
declaration for the vector port.

Dependencies

This option is enabled when the target language (specified by the Language option) is
VHDL.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-54

Command-Line Information
Property: ScalarizePorts
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ScalarizePorts

Minimize intermediate signals

Specify whether to optimize HDL code for debuggability or code coverage.

Settings

Default: Off

 On
Optimize for code coverage by minimizing intermediate signals. For example,
suppose that the generated code with this setting off is:
const3 <= to_signed(24, 7);

subtractor_sub_cast <= resize(const3, 8);

subtractor_sub_cast_1 <= resize(delayout, 8);

subtractor_sub_temp <= subtractor_sub_cast - subtractor_sub_cast_1;

With this setting on, HDL Coder optimizes the output to:
subtractor_sub_temp <= 24 - (resize(delayout, 8));

The coder removes the intermediate signals const3, subtractor_sub_cast, and
subtractor_sub_cast_1.

 Off
Optimize for debuggability by preserving intermediate signals.

Command-Line Information
Property: MinimizeIntermediateSignals
Type: string
Value: 'on' | 'off'

 HDL Code Generation Pane: Global Settings

10-55

Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

MinimizeIntermediateSignals

Include requirements in block comments

Enable or disable generation of requirements comments as comments in code or code
generation reports

Settings

Default: On

 On
If the model contains requirements comments, include them as comments in code or
code generation reports. See “Requirements Comments and Hyperlinks”.

 Off
Do not include requirements as comments in code or code generation reports.

Command-Line Information
Property: RequirementComments
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

RequirementComments

Inline MATLAB Function block code

Inline HDL code for MATLAB Function blocks.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-56

Settings

Default: Off

 On
Inline HDL code for MATLAB Function blocks to avoid instantiation of code for
custom blocks.

 Off
Instantiate HDL code for MATLAB Function blocks and do not inline.

Command-Line Information
Property: InlineMATLABBlockCode
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

InlineMATLABBlockCode

Generate parameterized HDL code from masked subsystem

Generate reusable HDL code for subsystems with the same tunable mask parameters,
but with different values.

Settings

Default: Off

 On
Generate one HDL file for multiple masked subsystems with different values for
tunable mask parameters. HDL Coder automatically detects atomic subsystems with
tunable mask parameters that are shareable.

Inside the subsystem, you can use the mask parameter only in the following blocks
and parameters.

 HDL Code Generation Pane: Global Settings

10-57

Block Parameter Limitation

Constant Constant value on the
Main tab of the dialog box

None

Gain Gain on the Main tab of
the dialog box

Parameter data type
must be the same for all
Gain blocks.

 Off
Generate a separate HDL file for each masked subsystem.

Command-Line Information
Property: MaskParameterAsGeneric
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

MaskParameterAsGeneric

Initialize all RAM blocks

Enable or suppress generation of initial signal value for RAM blocks.

Settings

Default: On

 On
For RAM blocks, generate initial values of '0' for both the RAM signal and the
output temporary signal.

 Off
For RAM blocks, do not generate initial values for either the RAM signal or the
output temporary signal.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-58

Command-Line Information
Property: InitializeBlockRAM
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

InitializeBlockRAM

RAM Architecture

Select RAM architecture with clock enable, or without clock enable, for all RAMs in DUT
subsystem.

Settings

Default: RAM with clock enable

Select one of the following options from the menu:

• RAM with clock enable: Generate RAMs with clock enable.
• Generic RAM without clock enable: Generate RAMs without clock enable.

Command-Line Information
Property: RAMArchitecture
Type: string
Value: 'WithClockEnable' | 'WithoutClockEnable'
Default: 'WithClockEnable'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

RAMArchitecture

HDL coding standard

 HDL Code Generation Pane: Global Settings

10-59

Specify an HDL coding standard.

Settings

Default: None

None

Generate generic synthesizable HDL code.
Industry

Generate HDL code that follows the industry standard rules supported by the
HDL Coder software. When this option is enabled, the coder generates a standard
compliance report.

Command-Line Information
Property: HDLCodingStandard
Type: string
Value: 'None' | 'Industry'
Default: 'None'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLCodingStandard

Do not show passing rules in coding standard report

Specify whether to show rules without errors or warnings in the coding standard report.

Settings

Default: Off

 On
Show only rules with errors or warnings.

 Off
Show all rules.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-60

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the ShowPassingRules property of the HDL coding standard customization
object.

For example, to omit passing rules from the report, enter:

cso.ShowPassingRules.enable = false;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check for duplicate names

Specify whether to check for duplicate names in the design (CGSL-1.A.A.5).

Settings

Default: On

 On
Check for duplicate names.

 Off
Do not check for duplicate names.

Command-Line Information

To set this property:

 HDL Code Generation Pane: Global Settings

10-61

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the DetectDuplicateNamesCheck property of the HDL coding standard
customization object.

For example, to disable the check for duplicate names, enter:

cso.DetectDuplicateNamesCheck.enable = false;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check for HDL keywords in design names

Specify whether to check for HDL keywords in design names (CGSL-1.A.A.3).

Settings

Default: On

 On
Check for HDL keywords in design names.

 Off
Do not check for HDL keywords in design names.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the HDLKeywords property of the HDL coding standard customization object.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-62

For example, to disable the check for HDL keywords in design names, enter:

cso.HDLKeywords.enable = false;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check for initial statements that set RAM initial values

Specify whether to check for initial statements that set RAM initial values
(CGSL-2.C.D.1).

Settings

Default: On

 On
Check for initial statements that set RAM initial values

 Off
Do not check for initial statements that set RAM initial values.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the InitialStatements property of the HDL coding standard customization
object.

For example, to disable the check for initial statements that set RAM initial values,
enter:

 HDL Code Generation Pane: Global Settings

10-63

cso.InitialStatements.enable = false;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check module, instance, and entity name length

Specify whether to check module, instance, and entity name length (CGSL-1.A.C.3).

Settings

Default: On

 On
Check module, instance, and entity name length.

Minimum
Minimum name length, specified as a positive integer. The default is 2.

Maximum
Maximum name length, specified as a positive integer. The default is 32.

 Off
Do not check module, instance, and entity name length.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the ModuleInstanceEntityNameLength property of the HDL coding standard
customization object.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-64

For example, to enable the check for module, instance, and entity name length, with
5 as the minimum length and 30 as the maximum length, enter:

cso.ModuleInstanceEntityNameLength.enable = true;

cso.ModuleInstanceEntityNameLength.length = [5 30];

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check signal, port, and parameter name length

Specify whether to check signal, port, and parameter name length (CGSL-1.A.B.1).

Settings

Default: On

 On
Check signal, port, and parameter name length.

Minimum
Minimum name length, specified as a positive integer. The default is 2.

Maximum
Maximum name length, specified as a positive integer. The default is 40.

 Off
Do not check signal, port, and parameter name length.

Command-Line Information

To set this property:

 HDL Code Generation Pane: Global Settings

10-65

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the SignalPortParamNameLength property of the HDL coding standard
customization object.

For example, to enable the check for signal, port, and parameter name length, with 5
as the minimum length and 30 as the maximum length, enter:

cso.SignalPortParamNameLength.enable = true;

cso.SignalPortParamNameLength.length = [5 30];

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Minimize use of variables

Specify whether to minimize use of variables (CGSL-2.G).

Settings

Default: On

 On
Minimize use of variables.

 Off
Do not minimize use of variables.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-66

cso = hdl.CodingStandard('Industry');

2 Set the MinimizeVariableUsage property of the HDL coding standard
customization object.

For example, to minimize use of variables, enter:

cso.MinimizeVariableUsage.enable = true;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check if-else statement chain length

Specify whether to check if-else statement chain length (CGSL-2.G.C.1c).

Settings

Default: On

 On
Check if-else statement chain length.

Length
Maximum if-else statement chain length, specified as a positive integer. The
default is 7.

 Off
Do not check if-else statement chain length.

Command-Line Information

To set this property:

 HDL Code Generation Pane: Global Settings

10-67

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the IfElseChain property of the HDL coding standard customization object.

For example, to check for if-else statement chains with length greater than 5, enter:

cso.IfElseChain.enable = true;

cso.IfElseChain.length = 5;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check if-else statement nesting depth

Specify whether to check if-else statement nesting depth (CGSL-2.G.C.1a).

Settings

Default: On

 On
Check if-else statement nesting depth.

Depth
Maximum if-else statement nesting depth, specified as a positive integer. The
default is 3.

 Off
Do not check if-else statement nesting depth.

Command-Line Information

To set this property:

10 Code Generation Options in the HDL Coder Dialog Boxes

10-68

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the IfElseNesting property of the HDL coding standard customization object.

For example, to enable the check for if-else statement nesting depth with a
maximum depth of 5, enter:

cso.IfElseNesting.enable = true;

cso.IfElseNesting.depth = 5;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check multiplier width

Specify whether to check multiplier bit width (CGSL-2.J.F.5).

Settings

Default: On

 On
Check multiplier width.

Maximum
Maximum multiplier bit width, specified as a positive integer. The default is 16.

 Off
Do not check multiplier width.

Command-Line Information

To set this property:

 HDL Code Generation Pane: Global Settings

10-69

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the MultiplierBitWidth property of the HDL coding standard customization
object.

For example, to enable the check for multiplier width with a maximum bit width of
32, enter:

cso.MultiplierBitWidth.enable = true;

cso.MultiplierBitWidth.width = 32;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check for non-integer constants

Specify whether to check for non-integer constants (CGSL-3.B.D.1).

Settings

Default: On

 On
Check for non-integer constants.

 Off
Do not check for non-integer constants.

Command-Line Information

To set this property:

1 Create an HDL coding standard customization object.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-70

cso = hdl.CodingStandard('Industry');

2 Set the NonIntegerTypes property of the HDL coding standard customization
object.

For example, to disable the check for non-integer constants, enter:

cso.NonIntegerTypes.enable = false;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Check line length

Specify whether to check line lengths in the generated HDL code (CGSL-3.A.D.5).

Settings

Default: On

 On
Check line length.

Maximum
Maximum number of characters in a line, specified as a positive integer. The
default is 110.

 Off
Do not check line length.

Command-Line Information

To set this property:

 HDL Code Generation Pane: Global Settings

10-71

1 Create an HDL coding standard customization object.

cso = hdl.CodingStandard('Industry');

2 Set the LineLength property of the HDL coding standard customization object.

For example, to enable the check line length with a maximum character length of 80,
enter:

cso.HDLKeywordsLineLength.enable = true;

cso.HDLKeywordsLineLength.length = 80;

3 Set the HDLCodingStandardCustomizations property to the HDL coding
standard customization object, specify the coding standard, and generate code.

For example, if your DUT is sfir_fixed/symmetric_fir, enter:

makehdl('sfir_fixed/symmetric_fir', 'HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso);

See Also

HDL Coding Standard Customization

Highlight feedback loops inhibiting delay balancing and optimizations

Specify whether to generate a script to highlight feedback loops that are inhibiting delay
balancing and optimizations.

Settings

Default: Off

 On
Generate a MATLAB script that highlights feedback loops in the original model and
generated model.

 Off
Do not generate a script to highlight feedback loops.

Command-Line Information
Property: HighlightFeedbackLoops
Type: string
Value: 'on' | 'off'

10 Code Generation Options in the HDL Coder Dialog Boxes

10-72

Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• HighlightFeedbackLoops

• “Find Feedback Loops”

Feedback loop highlighting script file name

Specify a file name for the feedback loop highlighting script.

Settings

Default: 'highlightFeedbackLoop'

Enter a file name for the feedback loop highlighting script.

Command-Line Information
Property: HighlightFeedbackLoopsFile
Type: string
Default: 'highlightFeedbackLoop'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• HighlightFeedbackLoopsFile

• “Find Feedback Loops”

 HDL Code Generation Pane: Test Bench

10-73

HDL Code Generation Pane: Test Bench

In this section...

“Test Bench Overview” on page 10-74
“HDL test bench” on page 10-74
“Cosimulation blocks” on page 10-75
“Cosimulation model for use with:” on page 10-76
“Test bench name postfix” on page 10-77
“Force clock” on page 10-77
“Clock high time (ns)” on page 10-78

10 Code Generation Options in the HDL Coder Dialog Boxes

10-74

In this section...

“Clock low time (ns)” on page 10-79
“Hold time (ns)” on page 10-80
“Setup time (ns)” on page 10-80
“Force clock enable” on page 10-81
“Clock enable delay (in clock cycles)” on page 10-82
“Force reset” on page 10-83
“Reset length (in clock cycles)” on page 10-83
“Hold input data between samples” on page 10-85
“Initialize test bench inputs” on page 10-86
“Multi-file test bench” on page 10-86
“Test bench reference postfix” on page 10-87
“Test bench data file name postfix” on page 10-88
“Use file I/O to read/write test bench data” on page 10-89
“Ignore output data checking (number of samples)” on page 10-89

Test Bench Overview

The Test Bench pane lets you set options that determine characteristics of generated
test bench code.

Generate Test Bench Button

The Generate Test Bench button initiates test bench generation for the system
selected in the Generate HDL for menu. See also makehdltb.

HDL test bench

Enable or disable HDL test bench generation.

Settings

Default: On

 On

 HDL Code Generation Pane: Test Bench

10-75

Enable generation of HDL test bench code that can interface to the DUT.

 Off
Suppress generation of HDL test bench code.

Dependencies

This check box enables the options in the Configuration section of the Test Bench
pane.

Command-Line Information
Property: GenerateHDLTestBench
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generating VHDL Test Bench Code”

Cosimulation blocks

Generate a model containing HDL Cosimulation block(s) for use in testing the DUT.

Settings

Default: Off

 On
When you select this option, HDL Coder generates and opens a model that contains
one or more HDL Cosimulation blocks. The coder generates cosimulation blocks if
your installation includes one or more of the following:

• HDL Verifier™ for use with Mentor Graphics ModelSim®

• HDL Verifier for use with Cadence Incisive®

The coder configures the generated HDL Cosimulation blocks to conform to the port
and data type interface of the DUT selected for code generation. By connecting an

10 Code Generation Options in the HDL Coder Dialog Boxes

10-76

HDL Cosimulation block to your model in place of the DUT, you can cosimulate your
design with the desired simulator.

 Off
Do not generate HDL Cosimulation blocks.

Dependencies

This check box enables the other options in the Configuration section of the Test
Bench pane.

Command-Line Information
Property: GenerateCoSimBlock
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

GenerateCoSimBlock

Cosimulation model for use with:

Specify the HDL cosimulator for use with the generated HDL Cosimulation block and
model

Settings

Default: Mentor Graphics ModelSim

Select one of the following options from the dropdown menu:

• Mentor Graphics ModelSim: This option is the default. HDL Coder generates and
opens a Simulink model that contains an HDL Cosimulation block specifically for use
with Mentor Graphics ModelSim.

• Cadence Incisive: The coder generates and opens a Simulink model that contains
an HDL Cosimulation block specifically for use with Cadence Incisive.

 HDL Code Generation Pane: Test Bench

10-77

Command-Line Information
Property: GenerateCosimModel
Type: string
Value: 'ModelSim' | 'Incisive'|None
Default: 'ModelSim'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

GenerateCoSimModel

Test bench name postfix

Specify a suffix appended to the test bench name.

Settings

Default: _tb

For example, if the name of your DUT is my_test, HDL Coder adds the default postfix
_tb to form the name my_test_tb.

Command-Line Information
Property: TestBenchPostFix
Type: string
Default: '_tb'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

TestBenchPostFix

Force clock

Specify whether the test bench forces clock input signals.

Settings

Default: On

10 Code Generation Options in the HDL Coder Dialog Boxes

10-78

 On
The test bench forces the clock input signals. When this option is selected, the clock
high and low time settings control the clock waveform.

 Off
A user-defined external source forces the clock input signals.

Dependencies

This property enables the Clock high time and Clock high time options.

Command-Line Information
Property: ForceClock
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ForceClock

Clock high time (ns)

Specify the period, in nanoseconds, during which the test bench drives clock input signals
high (1).

Settings

Default: 5

The Clock high time and Clock low time properties define the period and duty cycle
for the clock signal. Using the defaults, the clock signal is a square wave (50% duty cycle)
with a period of 10 ns.

Dependency

This parameter is enabled when Force clock is selected.

 HDL Code Generation Pane: Test Bench

10-79

Command-Line Information
Property: ClockHighTime
Type: integer
Value: positive integer
Default: 5

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockHighTime

Clock low time (ns)

Specify the period, in nanoseconds, during which the test bench drives clock input signals
low (0).

Settings

Default: 5

The Clock high time and Clock low time properties define the period and duty cycle
for the clock signal. Using the defaults, the clock signal is a square wave (50% duty cycle)
with a period of 10 ns.

Dependency

This parameter is enabled when Force clock is selected.

Command-Line Information
Property: ClockLowTime
Type: integer
Value: positive integer
Default: 5

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockLowTime

10 Code Generation Options in the HDL Coder Dialog Boxes

10-80

Hold time (ns)

Specify a hold time, in nanoseconds, for input signals and forced reset input signals.

Settings

Default: 2 (given the default clock period of 10 ns)

The hold time defines the number of nanoseconds that reset input signals and input data
are held past the clock rising edge. The hold time is expressed as a positive integer or
double (with a maximum of 6 significant digits after the decimal point).

Tips

• The specified hold time must be less than the clock period (specified by the Clock
high time and Clock low time properties).

• This option applies to reset input signals only if Force reset is selected.

Command-Line Information
Property: HoldTime
Type: integer
Value: positive integer
Default: 2

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HoldTime

Setup time (ns)

Display setup time for data input signals.

Settings

Default: None

This is a display-only field, showing a value computed as (clock period - HoldTime) in
nanoseconds.

 HDL Code Generation Pane: Test Bench

10-81

Dependency

The value displayed in this field depends on the clock rate and the values of the Hold
time property.

Command-Line Information

Because this is a display-only field, a corresponding command-line property does not
exist.

See Also

HoldTime

Force clock enable

Specify whether the test bench forces clock enable input signals.

Settings

Default: On

 On
The test bench forces the clock enable input signals to active-high (1) or active-low
(0), depending on the setting of the clock enable input value.

 Off
A user-defined external source forces the clock enable input signals.

Dependencies

This property enables the Clock enable delay (in clock cycles) option.

Command-Line Information
Property: ForceClockEnable
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-82

See Also

ForceClockEnable

Clock enable delay (in clock cycles)

Define elapsed time (in clock cycles) between deassertion of reset and assertion of clock
enable.

Settings

Default: 1

The Clock enable delay (in clock cycles) property defines the number of clock cycles
elapsed between the time the reset signal is deasserted and the time the clock enable
signal is first asserted. In the figure below, the reset signal (active-high) deasserts after 2
clock cycles and the clock enable asserts after a clock enable delay of 1 cycle (the default).

Dependency

This parameter is enabled when Force clock enable is selected.

Command-Line Information
Property: TestBenchClockEnableDelay
Type: integer
Default: 1

 HDL Code Generation Pane: Test Bench

10-83

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

TestBenchClockEnableDelay

Force reset

Specify whether the test bench forces reset input signals.

Settings

Default: On

 On
The test bench forces the reset input signals.

 Off
A user-defined external source forces the reset input signals.

Tips

If you select this option, you can use the Hold time option to control the timing of a
reset.

Command-Line Information
Property: ForceReset
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ForceReset

Reset length (in clock cycles)

10 Code Generation Options in the HDL Coder Dialog Boxes

10-84

Define length of time (in clock cycles) during which reset is asserted.

Settings

Default: 2

The Reset length (in clock cycles) property defines the number of clock cycles during
which reset is asserted. Reset length (in clock cycles) must be an integer greater than
or equal to 0. The following figure illustrates the default case, in which the reset signal
(active-high) is asserted for 2 clock cycles.

Dependency

This parameter is enabled when Force reset is selected.

Command-Line Information
Property: Resetlength
Type: integer
Default: 2

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ResetLength

 HDL Code Generation Pane: Test Bench

10-85

Hold input data between samples

Specify how long subrate signal values are held in valid state.

Settings

Default: On

 On
Data values for subrate signals are held in a valid state across N base-rate clock
cycles, where N is the number of base-rate clock cycles that elapse per subrate
sample period. (N >= 2.)

 Off
Data values for subrate signals are held in a valid state for only one base-rate clock
cycle. For the subsequent base-rate cycles, data is in an unknown state (expressed as
'X') until leading edge of the next subrate sample period.

Tip

In most cases, the default (On) is the best setting for Hold input data between
samples. This setting matches the behavior of a Simulink simulation, in which subrate
signals are held valid through each base-rate clock period.

In some cases (for example modeling memory or memory interfaces), it is desirable
to clear Hold input data between samples. In this way you can obtain diagnostic
information about when data is in an invalid ('X') state.

Command-Line Information
Property: HoldInputDataBetweenSamples
Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HoldInputDataBetweenSamples

10 Code Generation Options in the HDL Coder Dialog Boxes

10-86

Initialize test bench inputs

Specify initial value driven on test bench inputs before data is asserted to DUT.

Settings

Default: Off

 On
Initial value driven on test bench inputs is'0'.

 Off
Initial value driven on test bench inputs is 'X' (unknown).

Command-Line Information
Property: InitializeTestBenchInputs
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

InitializeTestBenchInputs

Multi-file test bench

Divide generated test bench into helper functions, data, and HDL test bench code files.

Settings

Default: Off

 On
Write separate files for test bench code, helper functions, and test bench data. The
file names are derived from the name of the DUT, the Test bench name postfix
property, and the Test bench data file name postfix property as follows:

 HDL Code Generation Pane: Test Bench

10-87

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target language is VHDL,
the default test bench file names are:

• symmetric_fir_tb.vhd: test bench code
• symmetric_fir_tb_pkg.vhd: helper functions package
• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog, the default
test bench file names are:

• symmetric_fir_tb.v: test bench code
• symmetric_fir_tb_pkg.v: helper functions package
• symmetric_fir_tb_data.v: test bench data

 Off
Write a single test bench file containing the HDL test bench code, helper functions,
and test bench data.

Dependency

When this property is selected, Test bench data file name postfix is enabled.

Command-Line Information
Property: MultifileTestBench
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

MultifileTestBench

Test bench reference postfix

Specify a string appended to names of reference signals generated in test bench code.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-88

Settings

Default: '_ref'

Reference signal data is represented as arrays in the generated test bench code. The
string specified by Test bench reference postfix is appended to the generated signal
names.

Command-Line Information
Parameter: TestBenchReferencePostFix
Type: string
Default: '_ref'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“TestBenchReferencePostFix”

Test bench data file name postfix

Specify suffix added to test bench data file name when generating multi-file test bench.

Settings

Default:'_data'

HDL Coder applies the Test bench data file name postfix string only when
generating a multi-file test bench (i.e., when Multi-file test bench is selected).

For example, if the name of your DUT is my_test, and Test bench name postfix has
the default value _tb, the coder adds the postfix _data to form the test bench data file
name my_test_tb_data.

Dependency

This parameter is enabled by Multi-file test bench.

Command-Line Information
Property: TestBenchDataPostFix

 HDL Code Generation Pane: Test Bench

10-89

Type: string
Default: '_data'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

TestBenchDataPostFix

Use file I/O to read/write test bench data

Create and use data files for reading and writing test bench input and output data.

Settings

Default: Off

 On
Create and use data files for reading and writing test bench input and output data.

 Off
Use constants in the test bench for DUT stimulus and reference data.

Command-Line Information
Property: UseFileIOInTestBench
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

UseFileIOInTestBench

Ignore output data checking (number of samples)

Specify number of samples during which output data checking is suppressed.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-90

Settings

Default: 0

The value must be a positive integer.

When the value of Ignore output data checking (number of samples), N, is greater
than zero, the test bench suppresses output data checking for the first N output samples
after the clock enable output (ce_out) is asserted.

When using pipelined block implementations, output data may be in an invalid state for
some number of samples. To avoid spurious test bench errors, determine this number
and set Ignore output data checking (number of samples) accordingly.

Be careful to specify N as a number of samples, not as a number of clock cycles. For
a single-rate model, these are equivalent, but they are not equivalent for a multirate
model.

You should use Ignore output data checking (number of samples) in cases where
there is a state (register) initial condition in the HDL code that does not match the
Simulink state, including the following specific cases:

• When you set the DistributedPipelining property to 'on' for the MATLAB
Function block (see “Distributed Pipeline Insertion for MATLAB Function Blocks”)

• When you set the ResetType property to 'None' for the following blocks:

• commcnvintrlv2/Convolutional Deinterleaver
• commcnvintrlv2/Convolutional Interleaver
• commcnvintrlv2/General Multiplexed Deinterleaver
• commcnvintrlv2/General Multiplexed Interleaver
• dspsigops/Delay
• simulink/Additional Math & Discrete/Additional Discrete/Unit Delay Enabled
• simulink/Commonly Used Blocks/Unit Delay
• simulink/Discrete/Delay
• simulink/Discrete/Memory
• simulink/Discrete/Tapped Delay
• simulink/User-Defined Functions/MATLAB Function
• sflib/Chart

 HDL Code Generation Pane: Test Bench

10-91

• sflib/Truth Table
• When generating a black box interface to existing manually written HDL code

Command-Line Information
Property: IgnoreDataChecking
Type: integer
Default: 0

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

IgnoreDataChecking

10 Code Generation Options in the HDL Coder Dialog Boxes

10-92

HDL Code Generation Pane: EDA Tool Scripts

In this section...

“EDA Tool Scripts Overview” on page 10-93
“Generate EDA scripts” on page 10-93
“Generate multicycle path information” on page 10-94
“Compile file postfix” on page 10-95
“Compile initialization” on page 10-95
“Compile command for VHDL” on page 10-96
“Compile command for Verilog” on page 10-97
“Compile termination” on page 10-97
“Simulation file postfix” on page 10-98
“Simulation initialization” on page 10-98
“Simulation command” on page 10-99
“Simulation waveform viewing command” on page 10-100

 HDL Code Generation Pane: EDA Tool Scripts

10-93

In this section...

“Simulation termination” on page 10-100
“Choose synthesis tool” on page 10-101
“Synthesis file postfix” on page 10-103
“Synthesis initialization” on page 10-104
“Synthesis command” on page 10-105
“Synthesis termination” on page 10-105
“Choose HDL lint tool” on page 10-106
“Lint initialization” on page 10-107
“Lint command” on page 10-108
“Lint termination” on page 10-108

EDA Tool Scripts Overview

The EDA Tool Scripts pane lets you set the options that control generation of script
files for third-party HDL simulation and synthesis tools.

Generate EDA scripts

Enable generation of script files for third-party electronic design automation (EDA)
tools. These scripts let you compile and simulate generated HDL code and/or synthesize
generated HDL code.

Settings

Default: On

 On
Generation of script files is enabled.

 Off
Generation of script files is disabled.

Command-Line Information
Parameter: EDAScriptGeneration

10 Code Generation Options in the HDL Coder Dialog Boxes

10-94

Type: string
Value: 'on' | 'off'
Default: 'on'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “EDAScriptGeneration”

Generate multicycle path information

Generate a file that reports multicycle path constraint information.

Settings

Default: Off

 On
Generate a text file that reports multicycle path constraint information, for use with
synthesis tools.

 Off
Do not generate a multicycle path information file.

Command-Line Information
Parameter: MulticyclePathInfo
Type: string
Value: 'on' | 'off'
Default: 'off'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate Multicycle Path Information Files ”
• MulticyclePathInfo

 HDL Code Generation Pane: EDA Tool Scripts

10-95

Compile file postfix

Specify a postfix string appended to the DUT or test bench name to form the compilation
script file name.

Settings

Default: _compile.do

For example, if the name of the device under test or test bench is my_design, HDL
Coder adds the postfix _compile.do to form the name my_design_compile.do.

Command-Line Information
Property: HDLCompileFilePostfix
Type: string
Default: '_compile.do'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLCompileFilePostfix”

Compile initialization

Specify a format string passed to fprintf to write the Init section of the compilation
script.

Settings

Default: vlib %s\n

The Init phase of the script performs required setup actions, such as creating a design
library or a project file.

The implicit argument, %s, is the contents of the 'VHDLLibraryName' property, which
defaults to'work'. You can override the default Init string ('vlib work\n' by
changing the value of 'VHDLLibraryName'.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-96

Command-Line Information
Property: HDLCompileInit
Type: string
Default: 'vlib %s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLCompileInit”

Compile command for VHDL

Specify a format string passed to fprintf to write the Cmd section of the compilation
script for VHDL files.

Settings

Default: vcom %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per generated
HDL file. On each call, a different file name is passed in.

The two implicit arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module. To omit the
flags, set SimulatorFlags to '' (the default).

Command-Line Information
Property: HDLCompileVHDLCmd
Type: string
Default: 'vcom %s %s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLCompileVHDLCmd”

 HDL Code Generation Pane: EDA Tool Scripts

10-97

Compile command for Verilog

Specify a format string passed to fprintf to write the Cmd section of the compilation
script for Verilog files.

Settings

Default: vlog %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per generated
HDL file. On each call, a different file name is passed in.

The two implicit arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module. To omit the
flags, set SimulatorFlags property to '' (the default).

Command-Line Information
Property: HDLCompileVerilogCmd
Type: string
Default: 'vlog %s %s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLCompileVerilogCmd”

Compile termination

Specify a format string passed to fprintf to write the termination portion of the
compilation script.

Settings

Default: empty string

The termination phase (Term) is the final execution phase of the script. One application
of this phase is to execute a simulation of HDL code that was compiled in the Cmd phase.
The Term phase does not take arguments.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-98

Command-Line Information
Property: HDLCompileTerm
Type: string
Default: ''

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLCompileTerm”

Simulation file postfix

Specify a postfix string appended to the DUT or test bench name to form the simulation
script file name.

Settings

Default: _sim.do

For example, if the name of the device under test or test bench is my_design, HDL
Coder adds the postfix _sim.do to form the name my_design_sim.do.

Command-Line Information
Property: HDLSimFilePostfix
Type: string
Default: '_sim.do'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSimFilePostfix”

Simulation initialization

 HDL Code Generation Pane: EDA Tool Scripts

10-99

Specify a format string passed to fprintf to write the initialization section of the
simulation script.

Settings

Default: The default string is

 ['onbreak resume\nonerror resume\n']

The Init phase of the script performs required setup actions, such as creating a design
library or a project file.

Command-Line Information
Property: HDLSimInit
Type: string
Default: ['onbreak resume\nonerror resume\n']

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSimInit”

Simulation command

Specify a format string passed to fprintf to write the simulation command.

Settings

Default: vsim -novopt %s.%s\n

If your target language is VHDL, the first implicit argument is the value of the
VHDLLibraryName property. If your target language is Verilog, the first implicit
argument is 'work'.

The second implicit argument is the top-level module or entity name.

Command-Line Information
Property: HDLSimCmd
Type: string

10 Code Generation Options in the HDL Coder Dialog Boxes

10-100

Default: 'vsim -novopt %s.%s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSimCmd”

Simulation waveform viewing command

Specify the waveform viewing command written to simulation script.

Settings

Default: add wave sim:%s\n

The implicit argument, %s, adds the signal paths for the DUT top-level input, output,
and output reference signals.

Command-Line Information
Property: HDLSimViewWaveCmd
Type: string
Default: 'add wave sim:%s\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSimViewWaveCmd”

Simulation termination

Specify a format string passed to fprintf to write the termination portion of the
simulation script.

Settings

Default: run -all\n

 HDL Code Generation Pane: EDA Tool Scripts

10-101

The termination phase (Term) is the final execution phase of the script. One application
of this phase is to execute a simulation of HDL code that was compiled in the Cmd phase.
The Term phase does not take arguments.

Command-Line Information
Property: HDLSimTerm
Type: string
Default: 'run -all\n'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSimTerm”

Choose synthesis tool

Enable or disable generation of synthesis scripts, and select the synthesis tool for which
HDL Coder generates scripts.

Settings

Default: None

None

When you select None, HDL Coder does not generate a synthesis script. The coder
clears and disables the fields in the Synthesis script pane.

Xilinx ISE

Generate a synthesis script for Xilinx ISE. When you select this option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _ise.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis

termination fields with TCL script code for the tool.

Microsemi Libero

Generate a synthesis script for Microsemi Libero. When you select this option, the
coder:

10 Code Generation Options in the HDL Coder Dialog Boxes

10-102

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _libero.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis

termination fields with TCL script code for the tool.

Mentor Graphics Precision

Generate a synthesis script for Mentor Graphics Precision. When you select this
option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _precision.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis

termination fields with TCL script code for the tool.

Altera Quartus II

Generate a synthesis script for Altera Quartus II. When you select this option, the
coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _quartus.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis

termination fields with TCL script code for the tool.

Synopsys Synplify Pro

Generate a synthesis script for Synopsys Synplify Pro. When you select this option,
the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _synplify.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis

termination fields with TCL script code for the tool.

Xilinx Vivado

Generate a synthesis script for Xilinx Vivado. When you select this option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _vivado.tcl

 HDL Code Generation Pane: EDA Tool Scripts

10-103

• Fills in the Synthesis initialization, Synthesis command and Synthesis
termination fields with TCL script code for the tool.

Custom

Generate a custom synthesis script. When you select this option, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to _custom.tcl
• Fills in the Synthesis initialization, Synthesis command and Synthesis

termination fields with example TCL script code.

Command-Line Information
Property: HDLSynthTool
Type: string
Value: 'None' | 'ISE' | 'Libero' | 'Precision' | 'Quartus' | 'Synplify' |
'Vivado' | 'Custom'
Default: 'None'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLSynthTool

Synthesis file postfix

Specify a postfix string appended to file name for generated synthesis scripts.

Settings

Default: None.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets the
postfix for generated synthesis file names to one of the following:
_ise.tcl

_libero.tcl

_precision.tcl

_quartus.tcl

_synplify.tcl

10 Code Generation Options in the HDL Coder Dialog Boxes

10-104

_vivado.tcl

_custom.tcl

For example, if the DUT name is my_designand the choice of synthesis tool is Synopsys
Synplify Pro, HDL Coder adds the postfix _synplify.tcl to form the name
my_design_synplify.tcl.

Command-Line Information
Property: HDLSynthFilePostfix
Type: string
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSynthFilePostfix”

Synthesis initialization

Specify a format string passed to fprintf to write the initialization section of the
synthesis script.

Settings

Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets
the Synthesis initialization string. The content of the string is specific to the selected
synthesis tool.

The default string is a format string passed to fprintf to write the Init section of the
synthesis script. The default string is a synthesis project creation command. The implicit
argument, %s, is the top-level module or entity name.

Command-Line Information
Property: HDLSynthInit
Type: string
Default: none

 HDL Code Generation Pane: EDA Tool Scripts

10-105

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSynthInit”

Synthesis command

Specify a format string passed to fprintf to write the synthesis command.

Settings

Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets
the Synthesis command string. The content of the string is specific to the selected
synthesis tool.

The default string is a format string passed to fprintf to write the Cmd section of the
synthesis script. The implicit argument, %s, is the filename of the entity or module.

Command-Line Information
Property: HDLSynthCmd
Type: string
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSynthCmd”

Synthesis termination

Specify a format string passed to fprintf to write the termination portion of the
synthesis script.

10 Code Generation Options in the HDL Coder Dialog Boxes

10-106

Settings

Default: none

Your choice of synthesis tool (from the Choose synthesis tool pulldown menu) sets
the Synthesis termination string. The content of the string is specific to the selected
synthesis tool.

The default string is a format string passed to fprintf to write the Term section of the
synthesis script. The termination string does not take arguments.

Command-Line Information
Property: HDLSynthTerm
Type: string
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Configure Compilation, Simulation, Synthesis, and Lint Scripts”
• “HDLSynthTerm”

Choose HDL lint tool

Enable or disable generation of an HDL lint script, and select the HDL lint tool for which
HDL Coder generates a script.

After you select an HDL lint tool, the Lint initialization, Lint command and Lint
termination fields are enabled.

Settings

Default: None

None

When you select None, the coder does not generate a lint script. The coder clears and
disables the fields in the Lint script pane.

Ascent Lint

Generate a lint script for Real Intent Ascent Lint.

 HDL Code Generation Pane: EDA Tool Scripts

10-107

HDL Designer

Generate a lint script for Mentor Graphics HDL Designer.
Leda

Generate a lint script for Synopsys Leda.
SpyGlass

Generate a lint script for Atrenta SpyGlass.
Custom

Generate a custom synthesis script.

Command-Line Information
Property: HDLLintTool
Type: string
Value: 'None' | 'AscentLint' | 'Leda' | 'SpyGlass' | 'Custom'
Default: 'None'

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate an HDL Lint Tool Script”
• “HDLLintTool”

Lint initialization

Enter an initialization string for your HDL lint script.

Command-Line Information
Property: HDLLintInit
Type: string
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate an HDL Lint Tool Script”

10 Code Generation Options in the HDL Coder Dialog Boxes

10-108

• “HDLLintInit”

Lint command

Enter the command for your HDL lint script.

Command-Line Information
Property: HDLLintCmd
Type: string
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate an HDL Lint Tool Script”
• “HDLLintCmd”

Lint termination

Enter a termination string for your HDL lint script.

Command-Line Information
Property: HDLLintTerm
Type: string
Default: none

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Generate an HDL Lint Tool Script”
• “HDLLintTerm”

11

Supported Blocks Library and Block
Properties

• “Generate a Supported Blocks Report” on page 11-2
• “Generate a Library of Supported Blocks” on page 11-3
• “HDL Block Properties” on page 11-4
• “HDL Filter Block Properties” on page 11-28
• “Configuring HDL Filter Architectures” on page 11-35
• “Distributed Arithmetic for HDL Filters” on page 11-37
• “Set and View HDL Block Parameters” on page 11-40
• “Set HDL Block Parameters for Multiple Blocks” on page 11-43
• “View HDL Model Parameters” on page 11-45
• “Pass through, No HDL, and Cascade Implementations” on page 11-46
• “Test Bench Block Restrictions” on page 11-47
• “Build a ROM Block with Simulink Blocks” on page 11-48

11 Supported Blocks Library and Block Properties

11-2

Generate a Supported Blocks Report

To generate an HTML table that summarizes blocks supported for HDL Code generation:

1 Enter the following at the MATLAB command line:

hdllib('html');

After hdllib creates the hdlsupported library, you see the following:

HDL Supported Block List hdlblklist.html

2 Click the hdlblklist.html link to see the generated block list.

See also “Create a Supported Blocks Library”.

 Generate a Library of Supported Blocks

11-3

Generate a Library of Supported Blocks

You can automatically generate a library of blocks supported for HDL code generation,
hdlsupported. You can then create your code generation subsystem using blocks from
the library.

To learn how to generate the library, see hdllib.

To learn how to set HDL block implementations and parameters, see “Set and View HDL
Block Parameters”.

View HDL-Specific Block Documentation

To view HDL-specific documentation for each block in hdlsupported:

1 Right-click the block and select HDL Code > HDL Block Properties.
2 To view the block documentation, click Help.

You can also view HDL-specific block documentation in “Supported Blocks”.

11 Supported Blocks Library and Block Properties

11-4

HDL Block Properties

In this section...

“Overview” on page 11-4
“BalanceDelays” on page 11-5
“ConstMultiplierOptimization” on page 11-5
“ConstrainedOutputPipeline” on page 11-7
“DistributedPipelining” on page 11-7
“DSPStyle” on page 11-9
“FlattenHierarchy” on page 11-11
“InputPipeline” on page 11-13
“InstantiateFunctions” on page 11-13
“LoopOptimization” on page 11-14
“LUTRegisterResetType” on page 11-15
“MapPersistentVarsToRAM” on page 11-16
“OutputPipeline” on page 11-18
“ResetType” on page 11-18
“SharingFactor” on page 11-20
“SoftReset” on page 11-20
“StreamingFactor” on page 11-22
“UseMatrixTypesInHDL” on page 11-22
“UseRAM” on page 11-23
“VariablesToPipeline” on page 11-27

Overview

Block implementation parameters enable you to control details of the code generated for
specific block implementations. See “Set and View HDL Block Parameters” to learn how
to select block implementations and parameters in the GUI or the command line.

Property names are strings. The data type of a property value is specific to the property.
This section describes the syntax of each block implementation parameter and how the
parameter affects generated code.

 HDL Block Properties

11-5

BalanceDelays

The BalanceDelays subsystem parameter enables you to set delay balancing on a
subsystem within a model.

BalanceDelays Setting Description

'inherit' (default) Use the delay balancing setting of the
parent subsystem. If this subsystem is
the highest-level subsystem, use the delay
balancing setting for the model.

'on' Balance delays for this subsystem.
'off' Do not balance delays for this subsystem,

even if the parent subsystem has delay
balancing enabled.

To disable delay balancing for any subsystem within a model, you must set the model-
level delay balancing parameter, BalanceDelays, to 'off'.

To learn how to set model-level delay balancing, see BalanceDelays.

Set Delay Balancing For a Subsystem

To set delay balancing for a subsystem using the HDL Block Properties dialog box:

1 Right-click the subsystem.
2 Select HDL Code > HDL Block Properties .
3 For BalanceDelays, select inherit, on, or off.

To set delay balancing for a subsystem from the command line, use hdlset_param. For
example, to turn off delay balancing for a subsystem, my_dut:

hdlset_param('my_dut', 'BalanceDelays', 'off')

See also “hdlset_param”.

ConstMultiplierOptimization

The ConstMultiplierOptimization implementation parameter lets you specify use
of canonical signed digit (CSD) or factored CSD optimizations for processing coefficient
multiplier operations in the generated code.

11 Supported Blocks Library and Block Properties

11-6

The following table shows the ConstMultiplierOptimization parameter values.

ConstMultiplierOptimization Setting Description

'none'

(Default)
By default, HDL Coder does not perform CSD or
FCSD optimizations. Code generated for the Gain
block retains multiplier operations.

'CSD' When you specify this option, the generated
code decreases the area used by the model while
maintaining or increasing clock speed, using
canonical signed digit (CSD) techniques. CSD
replaces multiplier operations with add and
subtract operations. CSD minimizes the number
of addition operations required for constant
multiplication by representing binary numbers
with a minimum count of nonzero digits.

'FCSD' This option uses factored CSD (FCSD) techniques,
which replace multiplier operations with shift and
add/subtract operations on certain factors of the
operands. These factors are generally prime but
can also be a number close to a power of 2, which
favors area reduction. This option lets you achieve
a greater area reduction than CSD, at the cost of
decreasing clock speed.

'auto' When you specify this option, HDL Coder chooses
between the CSD or FCSD optimizations. The
coder chooses the optimization that yields the
most area-efficient implementation, based on the
number of adders required. When you specify
'auto', the coder does not use multipliers,
unless conditions are such that CSD or FCSD
optimizations are not possible (for example, if the
design uses floating-point arithmetic).

The ConstMultiplierOptimization parameter is available for the following blocks:

• Gain
• Stateflow chart
• Truth Table

 HDL Block Properties

11-7

• MATLAB Function
• MATLAB System

ConstrainedOutputPipeline

Use the ConstrainedOutputPipeline parameter to specify a nonnegative number of
registers to place at the block outputs.

HDL Coder redistributes existing delays within your design to try to meet your
constraint. If there are fewer registers than the coder needs to satisfy your constraint,
the coder reports the difference between the number of desired and actual output
registers. You can add delays to your design using input or output pipelining.

Distributed pipelining does not redistribute registers you specify with constrained output
pipelining.

How to Specify Constrained Output Pipelining

To specify constrained output pipelining for a block using the GUI:

1 Right-click the block and select HDL Code > HDL Block Properties.
2 For ConstrainedOutputPipeline, enter the number of registers you want at the

output ports.

To specify constrained output pipelining, at the command line, enter:

hdlset_param(path_to_block,

 'ConstrainedOutputPipeline', number_of_output_registers)

For example, to constrain 6 registers at the output ports of a subsystem, subsys, in your
model, mymodel, enter:

hdlset_param('mymodel/subsys','ConstrainedOutputPipeline', 6)

See Also

• “Constrained Output Pipelining”

DistributedPipelining

The DistributedPipelining parameter enables pipeline register distribution, a speed
optimization that enables you to increase your clock speed by reducing your critical path.

11 Supported Blocks Library and Block Properties

11-8

The following table shows the effect of the DistributedPipelining and
OutputPipeline parameters.

DistributedPipelining OutputPipeline, nStages Result

Unspecified (nStages
defaults to 0)

HDL Coder does not insert
pipeline registers.

'off' (default)

nStages > 0 The coder inserts nStages
output registers at the
output of the subsystem,
MATLAB Function block, or
Stateflow chart.

Unspecified (nStages
defaults to 0)

The coder does not insert
pipeline registers.
DistributedPipelining

has no effect.

'on'

nStages > 0 The coder distributes
nStages registers inside
the subsystem, MATLAB
Function block, or Stateflow
chart, based on critical path
analysis.

To achieve further optimization of code generated with distributed pipelining, perform
retiming during RTL synthesis, if possible.

Tip Output data might be in an invalid state initially if you insert pipeline registers. To
avoid test bench errors resulting from initial invalid samples, disable output checking for
those samples. For more information, see:

• “Ignore output data checking (number of samples)”

• IgnoreDataChecking

See Also

• “Distributed Pipelining and Hierarchical Distributed Pipelining”
• “Specify Distributed Pipelining”

 HDL Block Properties

11-9

• “Distributed Pipeline Insertion for MATLAB Function Blocks”

DSPStyle

DSPStyle enables you to generate code that includes synthesis attributes for multiplier
mapping in your design. You can choose whether to map a particular block’s multipliers
to DSPs or logic in hardware.

For Xilinx targets, the generated code uses the use_dsp48 attribute. For Altera targets,
the generated code uses the multstyle attribute.

The DSPStyle options are listed in the following table.

DSPStyle Value Description

'none' (default) Do not insert a DSP mapping synthesis
attribute.

'on' Insert synthesis attribute that directs the
synthesis tool to map to DSPs in hardware.

'off' Insert synthesis attribute that directs the
synthesis tool to map to logic in hardware.

The DSPStyle parameter is available for the following blocks:

• Gain
• Product
• Product of Elements with Architecture set to Tree
• Subsystem
• Atomic Subsystem
• Variant Subsystem
• Enabled Subsystem
• Triggered Subsystem
• Model, Model Variants with Architecture set to ModelReference

Hierarchy Flattening Behavior

If you specify hierarchy flattening for a subsystem that also has a nondefault DSPStyle
setting, HDL Coder propagates the DSPStyle setting to the parent subsystem.

11 Supported Blocks Library and Block Properties

11-10

If the flattened subsystem contains Gain, Product, or Product of Elements blocks, the
coder keeps their nondefault DSPStyle settings, and replaces default DSPStyle settings
with the flattened subsystem DSPStyle setting.

Synthesis Attributes in Generated Code

The generated code for synthesis attributes depends on:

• Target language
• DSPStyle value
• SynthesisTool value

The following table shows examples of synthesis attributes in generated code.

SynthesisTool ValueDSPStyle
Value

TargetLanguage
Value 'Altera Quartus II' 'Xilinx ISE'

'Xilinx Vivado'

'Verilog' wire signed [32:0]

m4_out1;

wire signed [32:0]

m4_out1;

'none'

'VHDL' m4_out1 : signal; m4_out1 : signal;

'Verilog' (* multstyle = "dsp“

*) wire signed [32:0]

m4_out1;

(* use_dsp48 = "yes"

*) wire signed [32:0]

m4_out1;

'on'

'VHDL' attribute use_dsp48 :

string ;

attribute multstyle of

m4_out1 : signal is

“dsp“ ;

attribute use_dsp48 :

string ;

attribute use_dsp48 of

m4_out1 : signal is

"yes“ ;

'Verilog' (* multstyle = "logic“

*) wire signed [32:0]

m4_out1;

(* use_dsp48 = "no"

*) wire signed [32:0]

m4_out1;

'off'

'VHDL' attribute use_dsp48 :

string ;

attribute multstyle of

m4_out1 : signal is

“logic“ ;

attribute use_dsp48 :

string ;

attribute use_dsp48 of

m4_out1 : signal is

"no“ ;

 HDL Block Properties

11-11

Requirement For Synthesis Attribute Specification

You must specify a synthesis tool by using the SynthesisTool property.

How To Specify a Synthesis Attribute

To specify a synthesis attribute using the HDL Block Properties dialog box:

1 Right-click the block.
2 Select HDL Code > HDL Block Properties .
3 For DSPStyle, select on, off, or none.

To specify a synthesis attribute from the command line, use hdlset_param. For
example, suppose you have a model, my_model, with a DUT subsystem, my_dut,
that contains a . Gain block, my_multiplier. To insert a synthesis attribute to map
my_multiplier to a DSP, enter:

hdlset_param('my_model/my_dut/my_multiplier', 'DSPStyle', 'on')

See also “hdlset_param”.

Limitations For Synthesis Attribute Specification

• When you specify a nondefault DSPStyle block property, the
ConstMultiplierOptimization property must be set to 'none'.

• Inputs to multiplier components cannot use the double data type.
• Gain constant cannot be a power of 2.

FlattenHierarchy

FlattenHierarchy enables you to remove subsystem hierarchy from the HDL code
generated from your design.

FlattenHierarchy Setting Description

'inherit' (default) Use the hierarchy flattening setting of the
parent subsystem. If this subsystem is the
highest-level subsystem, do not flatten.

'on' Flatten this subsystem.

11 Supported Blocks Library and Block Properties

11-12

FlattenHierarchy Setting Description

'off' Do not flatten this subsystem, even if the
parent subsystem is flattened.

Prerequisites For Hierarchy Flattening

To flatten hierarchy, a subsystem must have the following block properties.

Property Required value

DistributedPipelining 'off'

StreamingFactor 0
SharingFactor 0

To flatten hierarchy, you must also have the MaskParameterAsGeneric global property
set to 'off'. For more information, see “MaskParameterAsGeneric”.

How To Flatten Hierarchy

To set hierarchy flattening using the HDL Block Properties dialog box:

1 Right-click the subsystem.
2 Select HDL Code > HDL Block Properties .
3 For FlattenHierarchy, select on, off, or inherit.

To set hierarchy flattening from the command line, use hdlset_param. For example, to
turn on hierarchy flattening for a subsystem, my_dut:

hdlset_param('my_dut', 'FlattenHierarchy', 'on')

See also “hdlset_param”.

Limitations For Hierarchy Flattening

A subsystem cannot be flattened if the subsystem is:

• Atomic and instantiated in the design more than once.
• A black box implementation or model reference.
• A triggered subsystem when TriggerAsClock is enabled
• A masked subsystem.

 HDL Block Properties

11-13

Note: This option removes subsystem boundaries before code generation. It does not
necessarily generate HDL code with a completely flat hierarchy.

InputPipeline

InputPipeline lets you specify a implementation with input pipelining for selected
blocks. The parameter value specifies the number of input pipeline stages (pipeline
depth) in the generated code.

The following code specifies an input pipeline depth of two stages for each Sum block in
the model:
sblocks = find_system(gcb, 'BlockType', 'Sum');

for ii=1:length(sblocks),hdlset_param(sblocks{ii},'InputPipeline', 2), end;

When generating code for pipeline registers, HDL Coder appends a postfix string to
names of input or output pipeline registers. The default postfix string is _pipe. To
customize the postfix string, use the Pipeline postfix option in the Global Settings /
General pane in the HDL Code Generation pane of the Configuration Parameters
dialog box. Alternatively, you can pass the desired postfix string in the makehdl property
PipelinePostfix. See PipelinePostfix for an example.

InstantiateFunctions

For the MATLAB Function block, you can use the InstantiateFunctions parameter to
generate a VHDL entity or Verilog module for each function. HDL Coder generates
code for each entity or module in a separate file.

The InstantiateFunctions options for the MATLAB Function block are listed in the
following table.

InstantiateFunctions Setting Description

'off' (default) Generate code for functions inline.
'on' Generate a VHDL entity or Verilog

module for each function, and save each
module or entity in a separate file.

How To Generate Instantiable Code for Functions

To set the InstantiateFunctions parameter using the HDL Block Properties dialog box:

11 Supported Blocks Library and Block Properties

11-14

1 Right-click the MATLAB Function block.
2 Select HDL Code > HDL Block Properties.
3 For InstantiateFunctions, select on.

To set the InstantiateFunctions parameter from the command line, use
hdlset_param. For example, to generate instantiable code for functions in a MATLAB
Function block, myMatlabFcn, in your DUT subsystem, myDUT, enter:

hdlset_param('my_DUT/my_MATLABFcnBlk', 'InstantiateFunctions', 'on')

Generate Code Inline for Specific Functions

If you want to generate instantiable code for some functions but not others, enable
the option to generate instantiable code for functions, and use coder.inline. See
coder.inline for details.

Limitations for Instantiable Code Generation for Functions

The software generates code inline when:

• Function calls are within conditional code or for loops.
• Any function is called with a nonconstant struct input.
• The function has state, such as a persistent variable, and is called multiple times.
• There is an enumeration anywhere in the design function.

If you enable InstantiateFunctions, UseMatrixTypesInHDL has no effect.

LoopOptimization

LoopOptimization enables you to stream or unroll loops in code generated from a
MATLAB Function block. Loop streaming optimizes for area; loop unrolling optimizes for
speed.

LoopOptimization Setting Description

'none' (default) Do not optimize loops.
'Unrolling' Unroll loops.
'Streaming' Stream loops.

 HDL Block Properties

11-15

How to Optimize MATLAB Function Block For Loops

To select a loop optimization using the HDL Block Properties dialog box:

1 Right-click the MATLAB Function block.
2 Select HDL Code > HDL Block Properties.
3 For LoopOptimization, select none, Unrolling, or Streaming.

To select a loop optimization from the command line, use hdlset_param. For example,
to turn on loop streaming for a MATLAB Function block, my_mlfn:

hdlset_param('my_mlfn', 'LoopOptimization', 'Streaming')

See also “hdlset_param”.

Limitations for MATLAB Function Block Loop Optimization

HDL Coder cannot stream a loop if:

• The loop index counts down. The loop index must increase by 1 on each iteration.
• There are 2 or more nested loops at the same level of hierarchy within another loop.
• Any particular persistent variable is updated both inside and outside a loop.

HDL Coder can stream a loop when the persistent variable is:

• Updated inside the loop and read outside the loop.
• Read within the loop and updated outside the loop.

LUTRegisterResetType

Use the LUTRegisterResetType block parameter to control synthesis of a LUT into a
ROM structure on an FPGA.

LUTRegisterResetType Value Description

default LUT output register has default reset logic.
When you generate HDL, the LUT will be
synthesized as registers.

none LUT output register has no reset logic.
When you generate HDL, the LUT will be
synthesized as a ROM.

11 Supported Blocks Library and Block Properties

11-16

MapPersistentVarsToRAM

With the MapPersistentVarsToRAM implementation parameter, you can use RAM-
based mapping for persistent arrays of a MATLAB Function block instead of mapping to
registers.

MapPersistentVarsToRAM Setting Mapping Behavior

off Persistent arrays map to registers in the generated HDL code.
on Persistent array variables map to RAM. For restrictions, see “RAM

Mapping Restrictions” on page 11-16.

RAM Mapping Restrictions

When you enable RAM mapping, a persistent array or user-defined System object private
property maps to a block RAM when all of the following conditions are true:

• Each read or write access is for a single element only. For example, submatrix access
and array copies are not allowed.

• Address computation logic is not read-dependent. For example, computation of a read
or write address using the data read from the array is not allowed.

• Persistent variables or user-defined System object private properties are initialized to
0 if they have a cyclic dependency. For example, if you have two persistent variables,
A and B, you have a cyclic dependency if A depends on B, and B depends on A.

• If an access is within a conditional statement, the conditional statement uses only
simple logic expressions (&&, ||, ~) or relational operators. For example, in the
following code, r1 does not map to RAM:

if (mod(i,2) > 0)

 a = r1(u);

else

 r1(i) = u;

end

Rewrite complex conditions, such as conditions that call functions, by assigning
them to temporary variables, and using the temporary variables in the conditional
statement. For example, to map r1 to RAM, rewrite the previous code as follows:

temp = mod(i,2);

if (temp > 0)

 HDL Block Properties

11-17

 a = r1(u);

else

 r1(i) = u;

end

• The persistent array or user-defined System object private property value depends on
external inputs.

For example, in the following code, bigarray does not map to RAM because it does
not depend on u:

function z = foo(u)

persistent cnt bigarray

if isempty(cnt)

 cnt = fi(0,1,16,10,hdlfimath);

 bigarray = uint8(zeros(1024,1));

end

z = u + cnt;

idx = uint8(cnt);

temp = bigarray(idx+1);

cnt(:) = cnt + fi(1,1,16,0,hdlfimath) + temp;

bigarray(idx+1) = idx;

• RAMSize is greater than or equal to the RAMMappingThreshold value. RAMSize is
the product NumElements * WordLength * Complexity.

• NumElements is the number of elements in the array.
• WordLength is the number of bits that represent the data type of the array.
• Complexity is 2 for arrays with a complex base type; 1 otherwise.

If any of the above conditions is false, the persistent array or user-defined System object
private property maps to a register in the HDL code.

RAMMappingThreshold

The default value of RAMMappingThreshold is 256. To change the threshold, use
hdlset_param. For example, the following command changes the mapping threshold for
the sfir_fixed model to 128 bits:

hdlset_param('sfir_fixed', 'RAMMappingThreshold', 128);

You can also change the RAM mapping threshold in the Configuration Parameters dialog
box. For more information, see “HDL Code Generation Pane: Global Settings ”.

11 Supported Blocks Library and Block Properties

11-18

Example

For an example that shows how to map persistent array variables to RAM in a MATLAB
Function block, see “RAM Mapping with the MATLAB Function Block”.

OutputPipeline

OutputPipeline lets you specify a implementation with output pipelining for selected
blocks. The parameter value specifies the number of output pipeline stages (pipeline
depth) in the generated code.

The following code specifies an output pipeline depth of two stages for each Sum block in
the model:
sblocks = find_system(gcb, 'BlockType', 'Sum');

for ii=1:length(sblocks),hdlset_param(sblocks{ii},'OutputPipeline', 2), end;

When generating code for pipeline registers, HDL Coder appends a postfix string to
names of input or output pipeline registers. The default postfix string is _pipe. To
customize the postfix string, use the Pipeline postfix option in the Configuration
Parameters dialog box, in the HDL Code Generation > Global Settings > General
tab. Alternatively, you can use the PipelinePostfix property with makehdl. See
PipelinePostfix for an example.

See also “Distributed Pipeline Insertion for MATLAB Function Blocks”.

ResetType

Use the ResetType block parameter to suppress reset logic generation.

ResetType Value Description

default Generate reset logic.
none Do not generate reset logic.

Reset is not applied to generated registers.
Therefore, mismatches between Simulink
and the generated code occur for some
number of samples during the initial phase,
when registers are not fully loaded.

 HDL Block Properties

11-19

ResetType Value Description

To avoid test bench errors during the initial
phase, determine the number of samples
required to fully load the registers. Then,
set the Ignore output data checking
(number of samples) option accordingly.
See also “IgnoreDataChecking”.

You can specify ResetType for the following blocks:

• Chart
• Convolutional Deinterleaver
• Convolutional Interleaver
• Delay
• Delay (DSP System Toolbox)
• General Multiplexed Deinterleaver
• General Multiplexed Interleaver
• MATLAB Function
• MATLAB System
• Memory
• Tapped Delay
• Truth Table
• Unit Delay Enabled
• Unit Delay

Reset Logic for Optimizations in the MATLAB Function Block

When you set ResetType to none for a MATLAB Function block, HDL Coder does not
generate reset logic for persistent variables in the MATLAB code.

However, if you specify other optimizations for the block, the coder may insert registers
that use reset logic. The coder does not suppress reset logic generation for these registers.
Therefore, if you set ResetType to none along with other block optimizations, your
generated code may have a reset port at the top level.

How to Suppress Reset Logic Generation

To suppress reset logic generation for a block using the UI:

11 Supported Blocks Library and Block Properties

11-20

1 Right-click the block and select HDL Code > HDL Block Properties.
2 For ResetType, select none.

To suppress reset logic generation, on the command line, enter:
hdlset_param(path_to_block,'ResetType','none')

For example, to suppress reset logic generation for a Unit Delay block, UnitDelay1,
within a subsystem, mySubsys, on the command line, enter:

hdlset_param('mySubsys/UnitDelay1','ResetType','none');

Specify Synchronous or Asynchronous Reset

To specify a synchronous or asynchronous reset, use the ResetType model-level
parameter. For details, see ResetType.

SharingFactor

Use SharingFactor to specify the number of functionally equivalent resources to map
to a single shared resource. The default is 0. See “Resource Sharing”.

SoftReset

Use the SoftReset block parameter to specify whether to generate hardware-friendly
synchronous reset logic, or local reset logic that matches the Simulink simulation
behavior. This property is available for the Unit Delay Resettable block or Unit Delay
Enabled Resettable block.

SoftReset Value Description

off (default) Generate local reset logic that matches the
Simulink simulation behavior.

on Generate synchronous reset logic for the
block. This option generates code that is
more efficient for synthesis, but does not
match the Simulink simulation behavior.

When SoftReset set to 'off', the following code is generated for a Unit Delay
Resettable block :

 HDL Block Properties

11-21

always @(posedge clk or posedge reset)

 begin : Unit_Delay_Resettable_process

 if (reset == 1'b1) begin

 Unit_Delay_Resettable_zero_delay <= 1'b1;

 Unit_Delay_Resettable_switch_delay <= 2'b00;

 end

 else begin

 if (enb) begin

 Unit_Delay_Resettable_zero_delay <= 1'b0;

 if (UDR_reset == 1'b1) begin

 Unit_Delay_Resettable_switch_delay <= 2'b00;

 end

 else begin

 Unit_Delay_Resettable_switch_delay <= In1;

 end

 end

 end

 end

assign Unit_Delay_Resettable_1 = (UDR_reset || Unit_Delay_Resettable_zero_delay ? 1'b1 :

 1'b0);

assign out0 = (Unit_Delay_Resettable_1 == 1'b1 ? 2'b00 :

 Unit_Delay_Resettable_switch_delay);

When SoftReset set to 'on', the following code is generated for a Unit Delay
Resettable block :

always @(posedge clk or posedge reset)

 begin : Unit_Delay_Resettable_process

 if (reset == 1'b1) begin

 Unit_Delay_Resettable_reg <= 2'b00;

 end

 else begin

 if (enb) begin

 if (UDR_reset != 1'b0) begin

 Unit_Delay_Resettable_reg <= 2'b00;

 end

 else begin

 Unit_Delay_Resettable_reg <= In1;

 end

 end

 end

 end

assign out0 = Unit_Delay_Resettable_reg;

11 Supported Blocks Library and Block Properties

11-22

StreamingFactor

Number of parallel data paths, or vectors, to transform into serial, scalar data paths by
time-multiplexing serial data paths and sharing hardware resources. The default is 0,
which implements fully parallel data paths. See also “Streaming”.

UseMatrixTypesInHDL

The UseMatrixTypesInHDL block property specifies whether to generate 2-D matrices
in HDL code when you have MATLAB matrices in your MATLAB Function block.

UseMatrixTypesInHDL Setting Description

off (default) Generate HDL vectors with index computation logic for
MATLAB matrices. This option can use more area in
the synthesized hardware.

on Generate HDL matrices for MATLAB matrices. This
option can save area in the synthesized hardware.

The following requirements apply:

• You cannot use matrices at the block input or
output ports.

• Matrix elements cannot be complex or struct data
types.

• You cannot use linear indexing to specify matrix
elements. For example, if you have a 3x3 matrix, A,
you cannot use A(4). Instead, use A(2,1).

You can also use a colon operator in either the row
or column subscript, but not both. For example, you
can use A(3,1:3) and A(2:3,1), but not A(2:3,
1:3).

• InstantiateFunctions must be set to
'off'. If you enable InstantiateFunctions,
UseMatrixTypesInHDL has no effect.

To generate 2-D matrices in HDL code:

 HDL Block Properties

11-23

1 Right-click the MATLAB Function block and select HDL Code > HDL Block
Properties.

2 For UseMatrixTypesInHDL, select on.

Alternatively, at the command line, use makehdl or hdlset_param to set the
UseMatrixTypesInHDL block property to 'on'.

For example, suppose you have a model, myModel, with a subsystem, dutSubsys, that
contains a MATLAB Function block, myMLFcn. To generate 2-D matrices in HDL code for
myMLFcn, enter:

hdlset_param('myModel/dutSubsys/myMLFcn', 'UseMatrixTypesInHDL', 'on')

UseRAM

The UseRAM implementation parameter enables using RAM-based mapping for a block
instead of mapping to a shift register.

UseRAM Setting Mapping Behavior

off The delay maps to a shift register in the generated HDL code,
except in one case. For details, see “Effects of Streaming and
Distributed Pipelining” on page 11-26.

on The delay maps to a dual-port RAM block when all of the following
conditions are true:

• Initial value of the delay is zero.
• Delay length > 4.
• Delay has one of the following set of numeric and data type

attributes:

• (a) Real scalar with a non-floating-point data type (such as
signed integer, unsigned integer, fixed point, or Boolean)

• (b) Complex scalar with real and imaginary parts that use
non-floating-point data type

• (c) Vector where each element is either (a) or (b)
• RAMSize is greater than or equal to the

RAMMappingThreshold value. RAMSize is the product
DelayLength * WordLength * ComplexLength.

11 Supported Blocks Library and Block Properties

11-24

UseRAM Setting Mapping Behavior

• DelayLength is the number of delays that the Delay block
specifies.

• WordLength is the number of bits that represent the data
type of the delay.

• ComplexLength is 2 for complex signals; 1 otherwise.

If any condition is false, the delay maps to a shift register in the
HDL code unless it merges with other delays to map to a single
RAM. For more information, see “Mapping Multiple Delays to
RAM” on page 11-24.

This implementation parameter is available for the Delay block in the Simulink Discrete
library and the Delay block in the DSP System Toolbox Signal Operations library.

Mapping Multiple Delays to RAM

HDL Coder can also merge several delays of equal length into one delay and then map
the merged delay to a single RAM. This optimization provides the following benefits:

• Increased occupancy on a single RAM
• Sharing of address generation logic, which minimizes duplication of identical HDL

code
• Mapping of delays to a RAM when the individual delays do not satisfy the threshold

The following rules control whether or not multiple delays can merge into one delay:

• The delays must:

• Be at the same level of the subsystem hierarchy.
• Use the same compiled sample time.
• Have UseRAM set to on, or be generated by streaming or resource sharing.
• Have the same ResetType setting, which cannot be none.

• The total word length of the merged delay cannot exceed 128 bits.
• The RAMSize of the merged delay is greater than or equal to the

RAMMappingThreshold value. RAMSize is the product DelayLength *
WordLength * VectorLength * ComplexLength.

 HDL Block Properties

11-25

• DelayLength is the total number of delays.
• WordLength is the number of bits that represent the data type of the merged

delay.
• VectorLength is the number of elements in a vector delay. VectorLength is 1

for a scalar delay.
• ComplexLength is 2 for complex delays; 1 otherwise.

Example of Multiple Delays Mapping to a Block RAM

RAMMappingThreshold for the following model is 100 bits.

The Delay and Delay1 blocks merge and map to a dual-port RAM in the generated HDL
code by satisfying the following conditions:

• Both delay blocks:

• Are at the same level of the hierarchy.
• Use the same compiled sample time.
• Have UseRAM set to on in the HDL block properties dialog box.

11 Supported Blocks Library and Block Properties

11-26

• Have the same ResetType setting of default.
• The total word length of the merged delay is 28 bits, which is below the 128-bit limit.
• The RAMSize of the merged delay is 112 bits (4 delays * 28-bit word length), which is

greater than the mapping threshold of 100 bits.

When you generate HDL code for this model, HDL Coder generates additional files to
specify RAM mapping. The coder stores these files in the same source location as other
generated HDL files, for example, the hdlsrc folder.

Effects of Streaming and Distributed Pipelining

When UseRAM is off for a Delay block, HDL Coder maps the delay to a shift register by
default. However, the coder changes the UseRAM setting to on and tries to map the delay
to a RAM under the following conditions:

• Streaming is enabled for the subsystem with the Delay block.
• Distributed pipelining is disabled for the subsystem with the Delay block.

Suppose that distributed pipelining is enabled for the subsystem with the Delay block.

• When UseRAM is off, the Delay block participates in retiming.
• When UseRAM is on, the Delay block does not participate in retiming. HDL Coder does

not break up a delay marked for RAM mapping.

Consider a subsystem with two Delay blocks, three Constant blocks, and three
Product blocks:

When UseRAM is on for the Delay block on the right, that delay does not participate in
retiming.

The following summary describes whether or not HDL Coder tries to map a delay to a
RAM instead of a shift register.

 HDL Block Properties

11-27

Optimizations Enabled for Subsystem with Delay BlockUseRAM Setting
for the Delay
Block

Distributed Pipelining
Only

Streaming Only Both Distributed
Pipelining and
Streaming

On Yes Yes Yes
Off No Yes, because mapping

to a RAM instead
of a shift register
can provide an area-
efficient design.

No

VariablesToPipeline

The VariablesToPipeline parameter enables you to insert a pipeline register at the
output of one or more MATLAB variables. Specify a list of variables as a string, with
spaces separating the variables.

See also “Pipeline Variables in the MATLAB Function Block”.

11 Supported Blocks Library and Block Properties

11-28

HDL Filter Block Properties

In this section...

“AddPipelineRegisters” on page 11-28
“ChannelSharing” on page 11-28
“CoeffMultipliers” on page 11-29
“DALUTPartition” on page 11-29
“DARadix ” on page 11-31
“FoldingFactor” on page 11-32
“MultiplierInputPipeline” on page 11-32
“MultiplierOutputPipeline” on page 11-32
“NumMultipliers” on page 11-33
“ReuseAccum” on page 11-33
“SerialPartition” on page 11-33

AddPipelineRegisters

You can use this parameter to insert a pipeline register between stages of computation in
a filter. The default value is off.

Take note of the following limitations when applying AddPipelineRegisters:

• If you use AddPipelineRegisters, the code generator forces full precision in the
HDL and the generated filter model. This option implements a pipelined adder tree
structure in the HDL code for which only full precision is supported. If you generate a
validation model, you must use full precision in the original model to avoid validation
mismatches.

• Pipeline stages introduce delays along the path in the model that contains the
affected filter. However, equivalent delays are not introduced on other, parallel signal
paths. To balance delays, use OutputPipeline on parallel data paths.

ChannelSharing

You can use the ChannelSharing implementation parameter with a multi-channel filter
to enable sharing a single filter implementation among channels for a more area-efficient

 HDL Filter Block Properties

11-29

design. This parameter is either ‘on’ or ‘off’. The default is ‘off’, and a separate
filter will be implemented for each channel.

An example of how to use ChannelSharing is in DSP System Toolbox Examples under
“Generate HDL Code for Multichannel FIR Filter”.

CoeffMultipliers

The CoeffMultipliers implementation parameter lets you specify use of canonical
signed digit (CSD) or factored CSD optimizations for processing coefficient multiplier
operations in code generated for certain filter blocks. Specify the CoeffMultipliers
parameter using one of the following options:

• 'csd': Use CSD techniques to replace multiplier operations with shift and add
operations. CSD techniques minimize the number of addition operations required
for constant multiplication by representing binary numbers with a minimum count
of nonzero digits. This representation decreases the area used by the filter while
maintaining or increasing clock speed.

• 'factored-csd': Use factored CSD techniques, which replace multiplier operations
with shift and add operations on prime factors of the coefficients. This option lets you
achieve a greater filter area reduction than CSD, at the cost of decreasing clock speed.

• 'multipliers' (default): Retain multiplier operations.

HDL Coder supports CoeffMultipliers for fully-parallel filter implementations. It is
not supported for fully-serial and partly-serial architectures.

DALUTPartition

The size of the LUT grows exponentially with the order of the filter. For a filter with
N coefficients, the LUT must have 2^N values. For higher order filters, LUT size must
be reduced to reasonable levels. To reduce the size, you can subdivide the LUT into a
number of LUTs, called LUT partitions. Each LUT partition operates on a different set of
taps. The results obtained from the partitions are summed.

For example, for a 160-tap filter, the LUT size is (2^160)*W bits, where W is the word
size of the LUT data. Dividing this into 16 LUT partitions, each taking 10 inputs (taps),
the total LUT size is reduced to 16*(2^10)*W bits.

Although LUT partitioning reduces LUT size, more adders are required to sum the LUT
data.

11 Supported Blocks Library and Block Properties

11-30

You can use DALUTPartition to enables DA code generation and specify the number
and size of LUT partitions.

Specify LUT partitions as a vector of integers [p1 p2...pN] where:

• N is the number of partitions.
• Each vector element specifies the size of a partition. The maximum size for an

individual partition is 12.
• The sum of all vector elements equals the filter length FL. FL is calculated differently

depending on the filter type. You can find how FL is calculated for different filter
types in the next section.

For more information on Distributed Arithmetic architectures, see “Distributed
Arithmetic for HDL Filters”

Specifying DALUTPartition for Single-Rate Filters

To determine the LUT partition for one of the supported single-rate filter types, calculate
FL as shown in the following table. Then, specify the partition as a vector whose elements
sum to FL.

Filter Type Filter Length (FL) Calculation

dfilt.dffir FL = length(find(Hd.numerator~= 0))

dfilt.dfsymfir

dfilt.dfasymfir

FL = ceil(length(find(Hd.numerator~= 0))/2)

You can also specify generation of DA code for your filter design without LUT
partitioning. To do so, specify a vector of one element, whose value is equal to the filter
length.

Specifying DALUTPartition for Multirate Filters

For supported multirate filters (mfilt.firdecim and mfilt.firinterp) , you can
specify the LUT partition as

• A vector defining a partition for LUTs for all polyphase subfilters.
• A matrix of LUT partitions, where each row vector specifies a LUT partition for a

corresponding polyphase subfilter. In this case, the FL is uniform for all subfilters.
This approach provides a fine control for partitioning each subfilter.

The following table shows the FL calculations for each type of LUT partition.

 HDL Filter Block Properties

11-31

LUT Partition Specified As... Filter Length (FL) Calculation

Vector: determine FL as shown in the Filter Length
(FL) Calculation column to the right. Specify the LUT
partition as a vector of integers whose elements sum to FL.

FL = size(polyphase(Hm), 2)

Matrix: determine the subfilter length FLi based on the
polyphase decomposition of the filter, as shown in the
Filter Length (FL) Calculation column to the right.
Specify the LUT partition for each subfilter as a row vector
whose elements sum to FLi.

p = polyphase(Hm);

FLi = length(find(p(i,:)));

where i is the index to the ith row of
the polyphase matrix of the multirate
filter. The ith row of the matrix p
represents the ith subfilter.

DARadix

The inherently bit-serial nature of DA can limit throughput. To improve throughput, the
basic DA algorithm can be modified to compute more than one bit sum at a time. The
number of simultaneously computed bit sums is expressed as a power of two called the
DA radix. For example, a DA radix of 2 (2^1) indicates that one bit sum is computed at a
time; a DA radix of 4 (2^2) indicates that two bit sums are computed at a time, and so on.

To compute more than one bit sum at a time, the LUT is replicated. For example, to
perform DA on 2 bits at a time (radix 4), the odd bits are fed to one LUT and the even
bits are simultaneously fed to an identical LUT. The LUT results corresponding to odd
bits are left-shifted before they are added to the LUT results corresponding to even bits.
This result is then fed into a scaling accumulator that shifts its feedback value by 2
places.

Processing more than one bit at a time introduces a degree of parallelism into the
operation, improving speed at the expense of area.

You can use DARadix to specify the number of bits processed simultaneously in DA. The
number of bits is expressed as N, which must be:

• A nonzero positive integer that is a power of two
• Such that mod(W, log2(N)) = 0, where W is the input word size of the filter

The default value for N is 2, specifying processing of one bit at a time, or fully serial DA,
which is slow but low in area. The maximum value for N is 2^W, where W is the input

11 Supported Blocks Library and Block Properties

11-32

word size of the filter. This maximum specifies fully parallel DA, which is fast but high in
area. Values of N between these extrema specify partly serial DA.

Note: When setting a DARadix value for symmetrical (dfilt.dfsymfir) and
asymmetrical (dfilt.dfasymfir) filters, see “Considerations for Symmetrical and
Asymmetrical Filters” on page 11-38.

For more information on Distributed Arithmetic architectures, see “Distributed
Arithmetic for HDL Filters”

FoldingFactor

FoldingFactor specifies the total number of clock cycles taken for the computation
of filter output in an IIR SOS filter with serial architecture. It is complementary with
“NumMultipliers” on page 11-33 property. You must select one property or the other;
you may not use both. If neither FoldingFactor orNumMultipliers is specified, HDL
code for the filter is generated with Fully Parallel architecture.

MultiplierInputPipeline

You can use this parameter to generate a specified number of pipeline stages at
multiplier inputs for FIR filter structures. The default value is 0.

Take note of the following limitation when applying MultiplierInputPipeline:

• Pipeline stages introduce delays along the path in the model that contains the
affected filter. However, equivalent delays are not introduced on other, parallel signal
paths. To balance delays, use OutputPipeline on parallel data paths.

MultiplierOutputPipeline

You can use this parameter to generate a specified number of pipeline stages at
multiplier outputs for FIR filter structures. The default value is 0.

Take note of the following limitation when applying MultiplierOutputPipeline:

• Pipeline stages introduce delays along the path in the model that contains the
affected filter. However, equivalent delays are not introduced on other, parallel signal
paths. To balance delays, use OutputPipeline on parallel data paths.

 HDL Filter Block Properties

11-33

NumMultipliers

NumMultipliers specifies the total number of multipliers used for the filter
implementation in an IIR SOS filter with serial architecture. It is complementary with
“FoldingFactor” on page 11-32 property. You must select one property or the other;
you may not use both. If neither FoldingFactor orNumMultipliers is specified, HDL
code for the filter is generated with Fully Parallel architecture.

ReuseAccum

You can use this parameter to enable or disable accumulator reuse in a serial HDL
architecture. The default is a fully parallel architecture.

To Generate This
Architecture...

Set ReuseAccum to...

Fully parallel Omit this property
Fully serial Not specified, or 'off'
Partly serial 'off'

Cascade-serial with explicitly specified
partitioning

'on'

Cascade-serial with automatically
optimized partitioning

'on'

For more information on parallel and serial filter architectures, see “Configuring HDL
Filter Architectures”

SerialPartition

You can use this parameter to specify partitions for a serial HDL architecture. The
default is a fully parallel architecture.

To Generate This
Architecture...

Set SerialPartition to...

Fully parallel Omit this property
Fully serial N, where N is the length of the filter

11 Supported Blocks Library and Block Properties

11-34

To Generate This
Architecture...

Set SerialPartition to...

Partly serial [p1 p2 p3...pN] : a vector of integers having N elements, where N
is the number of serial partitions. Each element of the vector specifies
the length of the corresponding partition. The sum of the vector
elements must be equal to the length of the filter. When you define the
partitioning for a partly serial architecture, consider the following:

• The filter length should be divided as uniformly as possible into
a vector of length equal to the number of multipliers intended.
For example, if your design requires a filter of length 9 with 2
multipliers, the recommended partition is [5 4]. If your design
requires 3 multipliers, the recommended partition is[3 3 3]
rather than some less uniform division such as [1 4 4] or [3 4
2].

• If your design is constrained by the need to compute each output
value (corresponding to each input value) in an exact number N of
clock cycles, use N as the largest partition size and partition the
other elements as uniformly as possible. For example, if the filter
length is 9 and your design requires exactly 4 cycles to compute the
output, define the partition as [4 3 2]. This partition executes in
4 clock cycles, at the cost of 3 multipliers.

Cascade-serial with
explicitly specified
partitioning

[p1 p2 p3...pN]: a vector of integers having N elements, where N
is the number of serial partitions. Each element of the vector specifies
the length of the corresponding partition. The sum of the vector
elements must be equal to the length of the filter. The values of the
vector elements must be in descending order, except that the last two
element must be equal. For example, for a filter of length 9, partitions
such as[5 4] or [4 3 2] would be legal, but the partitions [3 3 3]
or [3 2 4] would raise an error at code generation time.

Cascade-serial with
automatically optimized
partitioning

Omit this property.

For more information on parallel and serial filter architectures, see “Configuring HDL
Filter Architectures”

 Configuring HDL Filter Architectures

11-35

Configuring HDL Filter Architectures

TheHDL Coder software provides architecture options that extend your control over
speed vs. area tradeoffs in the realization of filter designs. To achieve the desired tradeoff
for generated HDL code, you can either specify a fully parallel architecture , or choose
one of several serial architectures.

You configure a serial architecture using the “SerialPartition” and “ReuseAccum”
parameters.

Fully Parallel Architecture

This is the default option. A fully parallel architecture uses a dedicated multiplier
and adder for each filter tap; the taps execute in parallel. A fully parallel architecture
is optimal for speed. However, it requires more multipliers and adders than a serial
architecture, and therefore consumes more chip area.

Serial Architectures

Serial architectures reuse hardware resources in time, saving chip area. The available
serial architecture options are:

• Fully serial: A fully serial architecture conserves area by reusing multiplier and
adder resources sequentially. For example, a four-tap filter design would use a single
multiplier and adder, executing a multiply/accumulate operation once for each tap.
The multiply/accumulate section of the design runs at four times the filter's input/
output sample rate. This saves area at the cost of some speed loss and higher power
consumption.

In a fully serial architecture, the system clock runs at a much higher rate than
the sample rate of the filter. Thus, for a given filter design, the maximum speed
achievable by a fully serial architecture will be less than that of a parallel
architecture.

• Partly serial: Partly serial architectures cover the full range of speed vs. area
tradeoffs that lie between fully parallel and fully serial architectures.

In a partly serial architecture, the filter taps are grouped into a number of serial
partitions. The taps within each partition execute serially, but the partitions execute
in parallel with respect to one another. The outputs of the partitions are summed at
the final output.

11 Supported Blocks Library and Block Properties

11-36

When you select a partly serial architecture, you specify the number of partitions and
the length (number of taps) of each partition. For example, you could specify a four-
tap filter with two partitions, each having two taps. The system clock would run at
twice the filter's sample rate.

• Cascade-serial: A cascade-serial architecture closely resembles a partly serial
architecture. As in a partly serial architecture, the filter taps are grouped into a
number of serial partitions that execute in parallel with respect to one another.
However, the accumulated output of each partition is cascaded to the accumulator
of the previous partition. The output of all partitions is therefore computed at the
accumulator of the first partition. This technique is termed accumulator reuse. A final
adder is not required, which saves area.

The cascade-serial architecture requires an extra cycle of the system clock to complete
the final summation to the output. Therefore, the frequency of the system clock must
be increased slightly with respect to the clock used in a non-cascade partly serial
architecture.

To generate a cascade-serial architecture, you specify a partly serial architecture with
accumulator reuse enabled. If you do not specify the serial partitions, HDL Coder
automatically selects an optimal partitioning.

Latency in Serial Architectures

Serialization of a filter increases the total latency of the design by one clock cycle. The
serial architectures use an accumulator (an adder with a register) to add the products
sequentially. An additional final register is used to store the summed result of all the
serial partitions, requiring an extra clock cycle for the operation. To handle latency, HDL
Coder inserts a Delay block into the generated model after the filter block.

Use Full Precision Filter Settings

When you choose a serial architecture, the code generator uses full precision in the HDL
code. HDL Coder therefore forces full precision in the generated model. If you generate
a validation model, you must use full precision in the original model to avoid validation
mismatches.

 Distributed Arithmetic for HDL Filters

11-37

Distributed Arithmetic for HDL Filters

Distributed Arithmetic (DA) is a widely used technique for implementing sum-of-
products computations without the use of multipliers. Designers frequently use DA
to build efficient Multiply-Accumulate Circuitry (MAC) for filters and other DSP
applications. The main advantage of DA is its high computational efficiency. DA
distributes multiply and accumulate operations across shifters, lookup tables (LUTs) and
adders in such a way that conventional multipliers are not required.

In a DA realization of a FIR filter structure, a sequence of input data words of width W is
fed through a parallel to serial shift register, producing a serialized stream of bits. The
serialized data is then fed to a bit-wise shift register. This shift register serves as a delay
line, storing the bit serial data samples.

The delay line is tapped (based on the input word size W), to form a W-bit address that
indexes into a lookup table (LUT). The LUT stores all possible sums of partial products
over the filter coefficients space. The LUT is followed by a shift and adder (scaling
accumulator) that adds the values obtained from the LUT sequentially.

A table lookup is performed sequentially for each bit (in order of significance starting
from the LSB). On each clock cycle, the LUT result is added to the accumulated and
shifted result from the previous cycle. For the last bit (MSB), the table lookup result is
subtracted, accounting for the sign of the operand.

This basic form of DA is fully serial, operating on one bit at a time. If the input data
sequence is W bits wide, then a FIR structure takes W clock cycles to compute the output.
Symmetric and asymmetric FIR structures are an exception, requiring W+1 cycles,
because one additional clock cycle is needed to process the carry bit of the preadders.

You can control how DA code is generated by using the DALUTPartition and DARadix
implementation parameters. The DALUTPartition and DARadix parameters have
certain requirements and restrictions that are specific to different filter types. These
requirements are included in the discussions of each parameter.

• Reduce LUT Size: “DALUTPartition” on page 11-29
• Improve Performance with Parallelism: “DARadix ” on page 11-31

For information on the theoretical foundations of DA, see “Further References” on page
11-38.

11 Supported Blocks Library and Block Properties

11-38

Requirements and Considerations for Generating Distributed Arithmetic
Code

Fixed-Point Quantization Required

Generation of DA code is supported only for fixed-point filter designs.

Specifying Filter Precision

The data path in HDL code generated for the DA architecture is carefully optimized for
full precision computations. The filter result is cast to the output data size only at the
final stage when it is presented to the output.

Distributed arithmetic merges the product and accumulator operations and does
computations at full precision. This approach ignores the Product output and
Accumulator properties of the Digital Filter block and sets these properties to full
precision.

Coefficients with Zero Values

DA ignores taps that have zero-valued coefficients and reduces the size of the DA LUT
accordingly.

Considerations for Symmetrical and Asymmetrical Filters

For symmetrical (dfilt.dfsymfir) and asymmetrical (dfilt.dfasymfir) filters:

• A bit-level preadder or presubtractor is required to add tap data values that have
coefficients of equal value and/or opposite sign. One extra clock cycle is required to
compute the result because of the additional carry bit.

• HDL Coder takes advantage of filter symmetry where possible. This reduces the DA
LUT size substantially, because the effective filter length for these filter types is
halved.

Further References

Detailed discussions of the theoretical foundations of DA appear in the following
publications:

• Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays,
Second Edition, Springer, pp 88–94, 128–143

 Distributed Arithmetic for HDL Filters

11-39

• White, S.A., Applications of Distributed Arithmetic to Digital Signal Processing: A
Tutorial Review. IEEE ASSP Magazine, Vol. 6, No. 3

11 Supported Blocks Library and Block Properties

11-40

Set and View HDL Block Parameters

In this section...

“Set HDL Block Parameters from the GUI” on page 11-40
“Set HDL Block Parameters from the Command Line” on page 11-40
“View All HDL Block Parameters” on page 11-41
“View Non-Default HDL Block Parameters” on page 11-41

For a list of HDL block properties, see “HDL Block Properties”.

Set HDL Block Parameters from the GUI

You can view and set HDL-related block properties, such as implementation and
implementation parameters, at the individual block level. To open the HDL Properties
dialog box:

1 Right-click the block and select HDL Code > HDL Block Properties.

The HDL Properties dialog box opens.
2 Modify the block properties as desired.
3 Click OK.

Set HDL Block Parameters from the Command Line

hdlset_param(path, ,Name, Value) sets HDL-related parameters in the block
or model referenced by path. One or more Name,Value pair arguments specify the
parameters to be set, and their values. You can specify several name and value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

For example, to set the sharing factor to 2 and the architecture to Tree for a block in
your model:

1 Open the model and select the block.
2 Enter the following at the command line:

hdlset_param (gcb, 'SharingFactor', 2, 'Architecture', 'Tree')

To view the architecture for the same block, enter the following at the command line:

 Set and View HDL Block Parameters

11-41

hdlget_param(gcb,'Architecture')

You can also assign the returned HDL block parameters to a cell array. In the following
example, hdlget_param returns all HDL block parameters and values to the cell array
p.
 p = hdlget_param(gcb,'all')

p =

 'Architecture' 'Linear' 'InputPipeline' [0] 'OutputPipeline' [0]

See also hdlset_param and hdlget_param.

View All HDL Block Parameters

hdldispblkparams displays the HDL block parameters available for a specified block.

The following example displays HDL block parameters and values for the currently
selected block.
hdldispblkparams(gcb,'all')

%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of

Elements')

%%

Implementation

 Architecture : Linear

Implementation Parameters

 InputPipeline : 0

 OutputPipeline : 0

See also hdldispblkparams.

View Non-Default HDL Block Parameters

The following example displays only HDL block parameters that have non-default values
for the currently selected block.
hdldispblkparams(gcb)

%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of

Elements')

%%

11 Supported Blocks Library and Block Properties

11-42

Implementation

 Architecture : Linear

Implementation Parameters

 OutputPipeline : 3

See also hdldispblkparams.

 Set HDL Block Parameters for Multiple Blocks

11-43

Set HDL Block Parameters for Multiple Blocks

For models that contain a large number of blocks, using the HDL Block Properties
dialog box to select block implementations or set implementation parameters for
individual blocks may not be practical. It is more efficient to set HDL-related model or
block parameters for multiple blocks programmatically. You can use the find_system
function to locate the blocks of interest. Then, use a loop to call hdlset_param to set the
desired parameters for each block.

See the Simulink documentation for detailed information about “find_system”.

The following example uses the sfir_fixed model to demonstrate how to locate a group
of blocks in a subsystem and specify the same output pipeline depth for all the blocks.

1 Open the sfir_fixed model.
2 Click on the sfir_fixed/symmetric_fir subsystem to select it.
3 Locate all Product blocks within the subsystem as follows:

 prodblocks = find_system(gcb, 'BlockType', 'Product')

prodblocks =

 'sfir_fixed/symmetric_fir/Product'

 'sfir_fixed/symmetric_fir/Product1'

 'sfir_fixed/symmetric_fir/Product2'

 'sfir_fixed/symmetric_fir/Product3'

4 Set the output pipeline depth to 2 for all selected blocks.
for ii=1:length(prodblocks), hdlset_param(prodblocks{ii}, 'OutputPipeline', 2), end;

5 To verify the settings, display the value of the OutputPipeline parameter for the
blocks .
 for ii=1:length(prodblocks), hdlget_param(prodblocks{ii}, 'OutputPipeline'), end;

ans =

 2

ans =

 2

ans =

 2

ans =

11 Supported Blocks Library and Block Properties

11-44

 2

 View HDL Model Parameters

11-45

View HDL Model Parameters

To display the names and values of HDL-related properties in a model, use the
hdldispmdlparams function.

The following example displays HDL-related properties and values of the current model,
in alphabetical order by property name.
 hdldispmdlparams(bdroot,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters

%%%%%%%%%%%%%%%%%%%%%%%%%

AddPipelineRegisters : 'off'

Backannotation : 'on'

BlockGenerateLabel : '_gen'

CheckHDL : 'off'

ClockEnableInputPort : 'clk_enable'

.

.

.

VerilogFileExtension : '.v'

The following example displays only HDL-related properties that have non-default
values.
 hdldispmdlparams(bdroot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters (non-default)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CodeGenerationOutput : 'GenerateHDLCodeAndDisplayGeneratedModel'

HDLSubsystem : 'simplevectorsum/vsum'

ResetAssertedLevel : 'Active-low'

Traceability : 'on'

11 Supported Blocks Library and Block Properties

11-46

Pass through, No HDL, and Cascade Implementations

Pass-through and No HDL Implementations

Implementation Description

Pass-through
implementations

Provides a pass-through implementation in which the block's inputs are
passed directly to its outputs. HDL Coder supports the following blocks
with a pass-through implementation:

• Convert 1-D to 2-D
• Reshape
• Signal Conversion
• Signal Specification

No HDL The NoHDL implementation completely removes the block from the
generated code. Thus, you can use the block in simulation but treat it as
a “no-op” in the HDL code. This implementation is used for many blocks
(such as Scopes and Assertions) that are significant in simulation but
would be meaningless in HDL code.

You can also use this implementation as an alternative implementation
for subsystems.

For more information related to special-purpose implementations, see “External
Component Interfaces”.

Cascade Implementation Best Practices

HDL Coder supports cascade implementations for the Sum of Elements, Product of
Elements, and MinMax blocks. These implementations require multiple clock cycles
to process their inputs; therefore, their inputs must be kept unchanged for their entire
sample-time period. Generated test benches accomplish this by using a register to drive
the inputs.

A recommended design practice, when integrating generated HDL code with other HDL
code, is to provide registers at the inputs. While not strictly required, adding registers
to the inputs improves timing and avoids problems with data stability for blocks that
require multiple clock cycles to process their inputs.

 Test Bench Block Restrictions

11-47

Test Bench Block Restrictions

Blocks that belong to the blocksets and toolboxes in the following list should not be
directly connected to the DUT. Instead, place them in a subsystem, and connect the
subsystem to the DUT. This restriction applies to all blocks in the following products:

• SimRF™
• SimDriveline™
• SimEvents®

• SimMechanics™
• SimPowerSystems™
• Simscape™

11 Supported Blocks Library and Block Properties

11-48

Build a ROM Block with Simulink Blocks

HDL Coder does not provide a ROM block, but you can easily build one using basic
Simulink blocks. The Getting Started with RAM and ROM example includes a ROM built
using a 1-D Lookup Table block and a Unit Delay block. To open the example, type the
following command at the MATLAB prompt:

hdlcoderramrom

12

Generating HDL Code for Multirate
Models

• “Code Generation from Multirate Models” on page 12-2
• “Timing Controller for Multirate Models” on page 12-5
• “Generate Reset for Timing Controller” on page 12-6
• “Multirate Model Requirements for HDL Code Generation” on page 12-7
• “Generate a Global Oversampling Clock” on page 12-10
• “Use Trigger As Clock in Triggered Subsystems” on page 12-16
• “Generate Multicycle Path Information Files” on page 12-18
• “Using Multiple Clocks in HDL Coder™” on page 12-27

12 Generating HDL Code for Multirate Models

12-2

Code Generation from Multirate Models

HDL Coder supports HDL code generation for single-clock and multiple clock multirate
models. Your model can include blocks running at multiple sample rates:

• Within the device under test (DUT).
• In the test bench driving the DUT. In this case, the DUT inherits multiple sample

rates from its inputs or outputs.
• In both the test bench and the DUT.

In general, generating HDL code for a multirate model does not differ greatly from
generating HDL code for a single-rate model. However, there are a few requirements
and restrictions on the configuration of the model and the use of specialized blocks (such
as Rate Transitions) that apply to multirate models. For details, see “Multirate Model
Requirements for HDL Code Generation” on page 12-7.

Clock Enable Generation for a Multirate DUT

The following block diagram shows the interior of a subsystem containing blocks that
are explicitly configured with different sample times. The upper and lower Counter Free-
Running blocks have sample times of 10 s and 20 s respectively. The counter output
signals are routed to output ports ST10 and ST20, which inherit their sample times.
The signal path terminating at ST10 runs at the base rate of the model; the signal path
terminating at ST20 is a subrate signal, running at half the base rate of the model.

As shown in the next figure, the outputs of the multirate DUT drive To Workspace blocks
in the test bench. These blocks inherit the sample times of the DUT outputs.

 Code Generation from Multirate Models

12-3

The following listing shows the VHDL entity declaration generated for the DUT.

ENTITY DUT IS

 PORT(clk : IN std_logic;

 reset : IN std_logic;

 clk_enable : IN std_logic;

 ce_out_0 : OUT std_logic;

 ce_out_1 : OUT std_logic;

 ST10 : OUT std_logic_vector(7 DOWNTO 0); -- uint8

 ST20 : OUT std_logic_vector(5 DOWNTO 0) -- ufix6

);

END DUT;

The entity has the standard clock, reset, and clock enable inputs and data outputs for the
ST10 and ST20 signals. In addition, the entity has two clock enable outputs (ce_out_0
and ce_out_1). These clock enable outputs replicate internal clock enable signals
maintained by the timing controller entity.

The following figure, showing a portion of a Mentor Graphics ModelSim simulation of
the generated VHDL code, lets you observe the timing relationship of the base rate clock
(clk), the clock enables, and the computed outputs of the model.

12 Generating HDL Code for Multirate Models

12-4

After the assertion of clk_enable (replicated by ce_out_0), a new value is computed
and output to ST10 for every cycle of the base rate clock.

A new value is computed and output for subrate signal ST20 for every other cycle of the
base rate clock. An internal signal, enb_1_2_1 (replicated by ce_out_1) governs the
timing of this computation.

 Timing Controller for Multirate Models

12-5

Timing Controller for Multirate Models

A timing controller entity generates the required rates from a single master clock, using
one or more counters to create multiple clock enables. The master clock rate is the fastest
rate in the model in single clock mode. In multiple clock mode, it can be any clock in the
DUT. The outputs of the timing controller are clock enable signals running at rates an
integer multiple slower than the timing controller's master clock

When using single clock mode, HDL code generated from multirate models employs a
single master clock that corresponds to the base rate of the DUT. When using multiple
clock mode, HDL code generated from multirate models employs one clock input for each
rate in the DUT. The number of timing controllers generated in multiple clock mode
depends on the design in the DUT.

Each timing controller entity definition is written to a separate code file. The timing
controller file and entity names derive from the name of the subsystem that is selected
for code generation (the DUT). To form the timing controller name, HDL Coder appends
the value of the TimingControllerPostfix property to the DUT name.

To learn more, see “Using Multiple Clocks in HDL Coder™”.

12 Generating HDL Code for Multirate Models

12-6

Generate Reset for Timing Controller

In this section...

“Requirements for Timing Controller Reset Port Generation” on page 12-6
“How To Generate Reset for Timing Controller” on page 12-6
“Limitations for Timing Controller Reset Port Generation” on page 12-6

You can generate a reset port for the timing controller, which generates the clock, clock
enable, and reset signals in a multirate DUT. In the generated code, the reset for the
timing controller is a DUT input port.

Requirements for Timing Controller Reset Port Generation

Your design must use single-clock mode. That is, the ClockInputs property value must
be 'Single'.

How To Generate Reset for Timing Controller

To generate a reset port for the timing controller, set the TimingControllerArch
property to 'resettable' using makehdl or hdlset_param.

To disable reset port generation for the timing controller, set the
TimingControllerArch property to 'default'.

For example, for a model, sfir_fixed, specify a reset port for the timing controller by
entering:

hdlset_param('sfir_fixed','TimingControllerArch','resettable')

Limitations for Timing Controller Reset Port Generation

The following workflows are not compatible with timing controller reset port generation:

• FPGA Turnkey
• FPGA-in-the-Loop
• Custom IP core generation

 Multirate Model Requirements for HDL Code Generation

12-7

Multirate Model Requirements for HDL Code Generation

In this section...

“Configuring Model Parameters” on page 12-7
“Sample Rate Requirements” on page 12-7
“Block Configuration and Restrictions For Multirate DUTs” on page 12-8

Configuring Model Parameters

Before generating HDL code, configure the parameters of your model using the
hdlsetup command. This sets up your multirate model for HDL code generation. This
section summarizes settings applied to the model by hdlsetup that are relevant to
multirate code generation. These include:

• Solver options that are recommended or required for HDL code generation:

• Type: Fixed-step.
• Solver: Discrete (no continuous states). Other fixed-step solvers could be

selected, but this option is usually best for simulating discrete systems.
• Tasking mode: Must be explicitly set to SingleTasking. Do not set Tasking

mode to Auto.
• hdlsetup configures the following Diagnostics / Sample time options for all

models:

• Multitask rate transition: error
• Single task rate transition: error

In multirate models intended for HDL code generation, Rate Transition blocks must
be explicitly inserted when blocks running at different rates are connected. Set
Multitask rate transition and Single task rate transition to error to detect
illegal rate transitions before code is generated.

Sample Rate Requirements

HDL Coder requires that at least one valid sample rate (sample time > 0) must exist in
the model. If all rates are 0, –1, or –2, the code generator (makehdl) and compatibility
checker (checkhdl) terminates with an error message.

12 Generating HDL Code for Multirate Models

12-8

Block Configuration and Restrictions For Multirate DUTs

• “Subsystem with Black Box Interface” on page 12-8
• “Rate Transition” on page 12-8
• “Upsample” on page 12-8
• “Downsample” on page 12-8
• “Delay and Zero-Order Hold” on page 12-9

Subsystem with Black Box Interface

HDL code generation is not supported for multirate DUTs that contain a subsystem with
a black box interface.

Rate Transition

Rate Transition blocks must be explicitly inserted into the signal path when blocks
running at different rates are connected. For general information about the Rate
Transition block, see the “Rate Transition” block documentation.

Make sure the data transfer properties for Rate Transition blocks are set as follows:

• Ensure deterministic data transfer: Selected.
• Ensure data integrity during data transfer: Selected.

Upsample

When configuring Upsample blocks, set Frame based mode to Maintain input
frame size.

When the Upsample block is in this mode, Initial conditions has no effect on generated
code.

Downsample

Configure Downsample blocks as follows:

• Set Frame based mode to Maintain input frame size.
• Set Sample based mode to Allow multirate.

Given these Downsample block settings, Initial conditions has no effect on generated
code if Sample offset is set to 0.

 Multirate Model Requirements for HDL Code Generation

12-9

Delay and Zero-Order Hold

Use Rate Transition blocks, rather than the following blocks, to create rate transitions in
models intended for HDL code generation:

• Delay
• Tapped Delay
• Unit Delay
• Unit Delay Enabled
• Zero-Order Hold

The Delay blocks listed should be configured to have the same input and output sample
rates.

Zero-Order Hold blocks must be configured with inherited (-1) sample times.

12 Generating HDL Code for Multirate Models

12-10

Generate a Global Oversampling Clock

In this section...

“Why Use a Global Oversampling Clock?” on page 12-10
“Requirements for the Oversampling Factor” on page 12-10
“Specifying the Oversampling Factor From the GUI” on page 12-11
“Specifying the Oversampling Factor From the Command Line” on page 12-12
“Resolving Oversampling Rate Conflicts” on page 12-12

Why Use a Global Oversampling Clock?

In many designs, the DUT is not self-contained. For example, consider a DUT that is part
of a larger system that supplies timing signals to its components under control of a global
clock. The global clock typically runs at a higher rate than some of the components under
its control. By specifying such a global oversampling clock, you can integrate your DUT
into a larger system without using Upsample or Downsample blocks.

To generate global clock logic, you specify an oversampling factor. The oversampling
factor expresses the desired rate of the global oversampling clock as a multiple of the
base rate of your model.

When you specify an oversampling factor, HDL Coder generates the global oversampling
clock and derives the required timing signals from clock signal. Generation of the global
oversampling clock affects only generated HDL code. The clock does not affect the
simulation behavior of your model.

Requirements for the Oversampling Factor

When you specify the oversampling factor for a global oversampling clock, note these
requirements:

• The oversampling factor must be an integer greater than or equal to 1.
• The default value is 1. In the default case, HDL Coder does not generate a global

oversampling clock.
• Some DUTs require multiple sampling rates for their internal operations. In such

cases, the other rates in the DUT must divide evenly into the global oversampling

 Generate a Global Oversampling Clock

12-11

rate. For more information, see “Resolving Oversampling Rate Conflicts” on page
12-12 .

Specifying the Oversampling Factor From the GUI

You can specify the oversampling factor for a global clock from the GUI as follows:

1 Select the HDL Code Generation > Global Settings pane in the Configuration
Parameters dialog box.

2 For Oversampling factor in the Clock settings section, enter the desired
oversampling factor. In the following figure, Oversampling factor specifies a global
oversampling clock that runs at ten times the base rate of the model.

3 Click Generate on the HDL Code Generation pane to initiate code generation.

12 Generating HDL Code for Multirate Models

12-12

HDL Coder reports the oversampling clock rate:
Begin VHDL Code Generation

MESSAGE: The design requires 10 times faster clock with respect to the base rate = 1.

Working on symmetric_fir_tc as hdlsrc\symmetric_fir_tc.vhd

Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

HDL Code Generation Complete.

Specifying the Oversampling Factor From the Command Line

You can specify the oversampling factor for a global clock from the command line by
setting the Oversampling property with hdlset_param or makehdl. The following
example specifies an oversampling factor of 7:
>> makehdl(gcb,'Oversampling', 7)

Generating HDL for 'sfir_fixed/symmetric_fir'

Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 0 messages.

Begin VHDL Code Generation

MESSAGE: The design requires 7 times faster clock with respect to the base rate = 1.

Working on symmetric_fir_tc as hdlsrc\symmetric_fir_tc.vhd

Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

HDL Code Generation Complete.

Resolving Oversampling Rate Conflicts

The HDL realization of some designs is inherently multirate, even though the original
Simulink model is single-rate. As an example, consider the simplevectorsum_cascade
model.

This model consists of a subsystem, vsum, driven by a vector input of width 10, with a
scalar output. The following figure shows the root level of the model.

 Generate a Global Oversampling Clock

12-13

The device under test is the vsum subsystem, shown in the following figure. The
subsystem contains a Sum block, configured for vector summation.

The simplevectorsum_cascade model specifies a cascaded implementation
(SumCascadeHDLEmission) for the Sum block. The generated HDL code for a cascaded

12 Generating HDL Code for Multirate Models

12-14

vector Sum block implementation runs at two effective rates: a faster (oversampling) rate
for internal computations and a slower rate for input/output. HDL Coder reports that the
inherent oversampling rate for the DUT is five times the base rate:
>> dut = 'simplevectorsum_cascade/vsum';

>> makehdl(dut);

Generating HDL for 'simplevectorsum_cascade/vsum'

Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 0 messages.

The code generation and optimization options you have chosen have introduced

 additional pipeline delays.

The delay balancing feature has automatically inserted matching delays for

 compensation.

The DUT requires an initial pipeline setup latency. Each output port

 experiences these additional delays

Output port 0: 1 cycles

Begin VHDL Code Generation

MESSAGE: The design requires 5 times faster clock with respect to the

 base rate = 1.

...

In some cases, the clock requirements for such a DUT conflict with the global
oversampling rate. To avoid oversampling rate conflicts, verify that subrates in the model
divide evenly into the global oversampling rate.

For example, if you request a global oversampling rate of 8 for the
simplevectorsum_cascade model, the coder displays a warning and ignores the
requested oversampling factor. The coder instead respects the oversampling factor that
the DUT requests:
>> dut = 'simplevectorsum_cascade/vsum';

>> makehdl(dut,'Oversampling',8);

Generating HDL for 'simplevectorsum/vsum'

Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 0 messages.

The code generation and optimization options you have chosen have introduced

 additional pipeline delays.

The delay balancing feature has automatically inserted matching delays for

 compensation.

The DUT requires an initial pipeline setup latency. Each output port

 experiences these additional delays

Output port 0: 1 cycles

Begin VHDL Code Generation

WARNING: The design requires 5 times faster clock with respect to

 the base rate = 1, which is incompatible with the oversampling

 value (8). Oversampling value is ignored.

...

 Generate a Global Oversampling Clock

12-15

An oversampling factor of 10 works in this case:
>> dut = 'simplevectorsum_cascade/vsum';

>> makehdl(dut,'Oversampling',10);

Generating HDL for 'simplevectorsum_cascade/vsum'

Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 0 messages.

The code generation and optimization options you have chosen have introduced

 additional pipeline delays.

The delay balancing feature has automatically inserted matching delays for

 compensation.

The DUT requires an initial pipeline setup latency. Each output port

 experiences these additional delays

Output port 0: 1 cycles

Begin VHDL Code Generation

MESSAGE: The design requires 10 times faster clock with respect to

 the base rate = 1.

...

12 Generating HDL Code for Multirate Models

12-16

Use Trigger As Clock in Triggered Subsystems

In this section...

“When To Use Trigger As Clock” on page 12-16
“Requirements For Using Trigger As Clock” on page 12-16
“How To Specify Trigger As Clock” on page 12-16
“Limitations When Using Trigger As Clock” on page 12-17

When To Use Trigger As Clock

Using the trigger as clock in triggered subsystems enables you to partition your design
into different clock regions in the generated code.

For example, you can model:

• A design with clocks that run at the same rate, but out of phase.
• Clock regions driven by an external or internal clock divider.
• Clock regions driven by clocks whose rates are not integer multiples of each other.
• Internally generated clocks.
• Clock gating for low-power design.

Requirements For Using Trigger As Clock

Each triggered subsystem input or output data signal must have delays immediately
outside and immediately inside the subsystem. These delays act as a synchronization
interface between the regions running at different rates.

How To Specify Trigger As Clock

Using the Configuration Parameters Dialog Box

In HDL Code Generation > Global Settings > Optimization tab, select Use trigger
signal as clock.

Using the HDL Workflow Advisor

In the HDL Code Generation > Set Code Generation Options > Set Advanced
Options > Optimization tab, select Use trigger signal as clock.

 Use Trigger As Clock in Triggered Subsystems

12-17

At the Command Line

Set the TriggerAsClock property using makehdl or hdlset_param.

For example, to generate HDL code that uses the trigger signal as clock for triggered
subsystems in a DUT subsystem, myDUT, in a model, myModel, enter:

makehdl ('myModel/myDUT','TriggerAsClock','on')

Limitations When Using Trigger As Clock

Using the trigger as clock for triggered subsystems can result in timing mismatches of
one cycle during testbench simulation.

12 Generating HDL Code for Multirate Models

12-18

Generate Multicycle Path Information Files

In this section...

“Overview” on page 12-18
“Format and Content of a Multicycle Path Information File” on page 12-19
“File Naming and Location Conventions” on page 12-24
“Generating Multicycle Path Information Files Using the GUI” on page 12-24
“Generating Multicycle Path Information Files Using the Command Line” on page
12-24
“Limitations” on page 12-25

Overview

HDL Coder implements multirate systems in HDL by generating a master clock running
at the model's base rate, and generating subrate timing signals from the master clock
(see also “Code Generation from Multirate Models” on page 12-2). The propagation
time between two subrate registers can be more than one cycle of the master clock. A
multicycle path is a path between two such registers.

When synthesizing HDL code, it is often useful to provide an analysis of multicycle
register-to-register paths to the synthesis tool. If the synthesis tool can identify
multicycle paths, you may be able to:

• Realize higher clock rates from your multirate design.
• Reduce the area of your design.
• Reduce the execution time of the synthesis tool.

Using the Generate multicycle path information option (or the
equivalentMulticyclePathInfo property for makehdl) you can instruct the coder
to analyze multicycle paths in the generated code, and generate a multicycle path
information file.

A multicycle path information file is a text file that describes one or more multicycle
path constraints. A multicycle path constraint is a timing exception – it relaxes the
default constraints on the system timing by allowing signals on a given path to have a
longer propagation time. When using multiple clock mode, the file also contains clock
definitions.

 Generate Multicycle Path Information Files

12-19

Typically a synthesis tool gives every signal a time budget of exactly 1 clock cycle to
propagate from a source register to a destination register. A timing exception defines a
path multiplier , N, that informs the synthesis tool that a signal has N clock cycles (N
> 1) to propagate from the source to destination register. The path multiplier expresses
some number of cycles of a relative clock at either the source or destination register.
Where a timing exception is defined for a path, the synthesis tool has more flexibility in
meeting the timing requirements for that path and for the system as a whole.

The generated multicycle path information file does not follow the native constraint file
format of a particular synthesis tool. The file contains the multicycle path information
required by popular synthesis tools. You can manually convert this information to
multicycle path constraints in the format required by your synthesis tool, or write
a script or tool to perform the conversion. The next section describes the format of a
multicycle path constraint file in detail.

Format and Content of a Multicycle Path Information File

The following listing shows a simple multicycle path information file.
%%

% Constraints Report

% Module: Sbs

% Model: mSbs.mdl

%

% File Name: hdlsrc/Sbs_constraints.txt

% Created: 2009-04-10 09:50:10

% Generated by MATLAB 7.9 and HDL Coder 1.6

%

%%

%%

% Multicycle Paths

%%

FROM : Sbs.boolireg; TO : Sbs.booloreg; PATH_MULT : 2; RELATIVE_CLK : source,

 Sbs.clk;

FROM : Sbs.boolireg_v<0>; TO : Sbs.booloreg_v<0>; PATH_MULT : 2;

 RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.doubireg; TO : Sbs.douboreg; PATH_MULT : 2; RELATIVE_CLK : source,

 Sbs.clk;

FROM : Sbs.doubireg_v<0>; TO : Sbs.douboreg_v<0>; PATH_MULT : 2;

 RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.intireg(7:0); TO : Sbs.intoreg(7:0); PATH_MULT : 2;

 RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.intireg_v<0>(7:0);TO : Sbs.intoreg_v<0>(7:0);PATH_MULT : 2

 RELATIVE_CLK : source,Sbs.clk;

12 Generating HDL Code for Multirate Models

12-20

The first section of the file is a header that identifies the source model and gives other
information about how HDL Coder generated the file. this section terminates with the
following comment lines:
%%

% Multicycle Paths

%%

Note: For a single-rate model or a model without multicycle paths, the coder generates
only the header section of the file.

The main body of the file follows. This section contains a flat table, each row of which
defines a multicycle path constraint.

Each constraint consists of four fields. The format of each field is one of the following:

• KEYWORD : field;

• KEYWORD : subfield1,... subfield_N;

The keyword identifies the type of information contained in the field. The keyword string
in each field terminates with a space followed by a colon.

The delimiter between fields is the semicolon. Within a field, the delimiter between
subfields is the comma.

The following table defines the fields of a multicycle path constraint, in left-to-right
order.

Keyword : field (or subfields) Field Description

FROM : src_reg_path; The source (or FROM) register of a multicycle path in the system.
The value of src_reg_path is the HDL path of the source
register's output signal. See also “Register Path Syntax for
FROM : and TO : Fields” on page 12-21 .

TO : dst_reg_path; The destination (or TO) register of a multicycle path in the
system. The FROM register drives the TO register in the HDL
code. The value of dst_reg_path is the HDL path of the
destination register's output signal. See also “Register Path
Syntax for FROM : and TO : Fields” on page 12-21.

 Generate Multicycle Path Information Files

12-21

Keyword : field (or subfields) Field Description

PATH_MULT : N; The path multiplier defines the number of clock cycles that a
signal has to propagate from the source to destination register.
The RELATIVE_CLK field describes the clock associated with the
path multiplier (the relative clock for the path).

The path multiplier value N indicates that the signal has N clock
cycles of its relative clock to propagate from source to destination
register.

The coder does not report register-to-register paths where N = 1,
because this is the default path multiplier.

RELATIVE_CLK : relclock,

sysclock;

The RELATIVE_CLK field contains two comma-delimited
subfields. Each subfield expresses the location of the relative
clock in a different form, for the use of different synthesis tools.
The subfields are:

• relclock: Since HDL Coder currently generates only single-
clock systems, this subfield takes the value source. In
a multi-clock system, the relative clock associated with a
multicycle path could be either the source or destination
register of the path, and this subfield could take on either of
the values source or destination. This usage is reserved
for future release of the coder.

• sysclock: This subfield is intended for use with synthesis
tools that require the actual propagation time for a multicycle
path. sysclock provides the path to the system's top-level
clock (e.g., Sbs.clk) You can use the period of this clock and
the path multiplier to calculate the propagation time for a
given path.

Register Path Syntax for FROM : and TO : Fields

The FROM : and TO: fields of a multipath constraint provide the path to a source
or destination register and information about the signal data type, size, and other
characteristics.

Fixed Point Signals

For fixed point signals, the register path has the form

12 Generating HDL Code for Multirate Models

12-22

reg_path<ps> (hb:lb)

where:

• reg_path is the HDL hierarchical path of the signal. The delimiter between
hierarchical levels is the period, for example: Sbs.u_H1.initreg.

• <ps>: Part select (zero-origin integer index) for vector signals. Angle brackets <>
delimit the part select field

• (hb:lb): Bit select field, indicated from high-order bit to low-order bit. The signal
width (hb:lb) is the same as the defined width of the signal in the HDL code.
This representation does not necessarily imply that the bits of the FROM : register
are connected to the corresponding bits of the TO: register. The actual bit-to-bit
connections are determined during synthesis.

Boolean and Double Signals

For boolean and double signals, the register path has the form

reg_path<ps>

where:

• reg_path is the HDL hierarchical path of the signal. The delimiter between
hierarchical levels is the period (.), for example: Sbs.u_H1.initreg.

• <ps>: Part select (zero-origin integer index) for vector signals. Angle brackets <>
delimit the part select field

For boolean and double signals, no bit select field is present.

Note: The format does not distinguish between boolean and double signals.

Examples

The following table gives several examples of register-to-register paths as represented in
a multicycle path information file.

Path Description

FROM : Sbs.intireg(7:0); TO :

Sbs.intoreg(7:0);

Both signals are fixed point and eight bits wide.

 Generate Multicycle Path Information Files

12-23

Path Description

FROM : Sbs.intireg; TO :

Sbs.intoreg;

Both signals are either boolean or double.

FROM : Sbs.intireg<0>(7:0); TO :

Sbs.intoreg<1>(7:0);

The FROM signal is the first element of a vector.
The TO signal is the second element of a vector.
Both signals are fixed point and eight bits wide.

FROM : Sbs.u_H1.intireg(7:0); TO :

Sbs.intoreg(7:0);

The signal intireg is defined in the module
H1, and H1 is inside the module Sbs. u_H1 is the
instance name of H1 in Sbs. Both signals are
fixed point and eight bits wide.

Ordering of Multicycle Path Constraints

For a given model or subsystem, the ordering of multicycle path constraints within a
multicycle path information file may vary depending on whether the target language
is VHDL or Verilog, and on other factors. The ordering of constraints may also change
in future versions of the coder. When you design scripts or other tools that process
multicycle path information file, do not build in any assumptions about the ordering of
multicycle path constraints within a file.

Clock Definitions

When you use multiple clock mode, the multicycle path information file also contains a
"Clock Definitions" section, as shown in the following listing. This section is located after
the header and before the "Multicycle Paths" section.

%%

% Clock Definitions

%%

CLOCK: Sbs.clk PERIOD: 0.05

CLOCK: Sbs.clk_1_2 BASE_CLOCK: Sbs.clk MULTIPLIER: 2 PERIOD: 0.1

The following table defines the fields for the clock definitions.

Keyword : field (or subfields) Field Description

CLOCK: clock_name Each clock in the design has a CLOCK definition
line.

PERIOD: float_value The Simulink rate (floating point value) associated
with this CLOCK.

12 Generating HDL Code for Multirate Models

12-24

Keyword : field (or subfields) Field Description

BASE_CLOCK: base_clock_name Names the master clock. This field does not appear
on the master clock.

MULTIPLIER: int_value Gives the ratio of the period of this clock to the
master clock. This field does not appear on the
master clock.

File Naming and Location Conventions

The file name for the multicycle path information file derives from the name of the DUT
and the postfix string '_constraints', as follows:

DUTname_constraints.txt

For example, if the DUT name is symmetric_fir, the name of the multicycle path
information file is symmetric_fir_constraints.txt.

HDL Coder writes the multicycle path information file to the target .

Generating Multicycle Path Information Files Using the GUI

By default, HDL Coder does not generate multicycle path information files. To enable
generation of multicycle path information files, select Generate multicycle path
information in the HDL Code Generation > EDA Tool Scripts pane of the
Configuration Parameters dialog box.

When you select Generate multicycle path information, the coder generates a
multicycle path information file each time you initiate code generation.

Generating Multicycle Path Information Files Using the Command Line

To generate a multicycle path information file from the command line, pass in the
property/value pair 'MulticyclePathInfo','on' to makehdl, as in the following
example.
>> dut = 'hdlfirtdecim_multicycle/Subsystem';

>> makehdl(dut, 'MulticyclePathInfo','on');

Generating HDL for 'hdlfirtdecim_multicycle/Subsystem'

Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 1 message.

 Generate Multicycle Path Information Files

12-25

MESSAGE: For the block 'hdlfirtdecim_multicycle/Subsystem/downsamp0'

 The initial condition may not be used when the sample offset is 0.

Begin VHDL Code Generation

Working on Subsystem_tc as hdlsrc\Subsystem_tc.vhd

Working on hdlfirtdecim_multicycle/Subsystem as hdlsrc\Subsystem.vhd

Generating package file hdlsrc\Subsystem_pkg.vhd

Finishing multicycle path connectivity analysis.

Writing multicycle path information in hdlsrc\Subsystem_constraints.txt

HDL Code Generation Complete.

Limitations

Unsupported Blocks and Implementations

The following table lists block implementations (and associated Simulink blocks) that
will not contribute to multicycle path constraints information.

Implementation Block(s)

SumCascadeHDLEmission Add, Subtract, Sum, Sum of Elements
ProductCascadeHDLEmission Product, Product of Elements
MinMaxCascadeHDLEmission MinMax, Maximum, Minimum
ModelReferenceHDLInstantiation Model
SubsystemBlackBoxHDLInstiation Subsystem
RamBlockDualHDLInstantiation Dual Port RAM
RamBlockSimpDualHDLInstantiation Simple Dual Port RAM
RamBlockSingleHDLInstantiation Single Port RAM

Limitations on MATLAB Function Blocks and Stateflow Charts

Loop-Carried Dependencies

HDL Coder does not generate constraints for MATLAB Function blocks or Stateflow
charts that contain a for loop with a loop-carried dependency.

Indexing Vector or Matrix Variables

In order to generate constraints for a vector or matrix index expression, the index
expression must be one of the following:

• A constant
• A for loop induction variable

12 Generating HDL Code for Multirate Models

12-26

For example, in the following example of code for a MATLAB Function block, the index
expression reg(i) does not generate constraints.

function y = fcn(u)

%#codegen

N=length(u);

persistent reg;

if isempty(reg)

 reg = zeros(1,N);

end

y = reg;

for i = 1:N-1

 reg(i) = u(i) + reg(i+1);

end

reg(N) = u(N);

File Generation Time

Tip Generation of constraint files for large models can be slow.

 Using Multiple Clocks in HDL Coder™

12-27

Using Multiple Clocks in HDL Coder™

This example shows how to instantiate multiple top-level synchronous clock input ports
in HDL Coder.

Overview of Clocking Modes

HDL Coder has two clocking modes: one that generates a single clock input to the Device
Under Test (DUT), and one that will generate a synchronous primary clock input for each
Simulink rate in the DUT. By default, HDL Coder creates an HDL design that uses a
single clock port for the DUT. In single clock mode, if multiple rates exist in the Simulink
model, a timing controller is created to control the clocking to the portions of the model
that run at a slower rate. The timing controller generates a set of clock enables with the
necessary rate and phase information to control the design. Each generated clock enable
is an integer multiple slower than the primary clock rate. Each output signal rate is
associated with a clock enable output signal that indicates the correct timing to sample
the output data.

In synchronous multiple clock mode, the generated code has a set of clock ports as
primary inputs to the DUT, each corresponding to a separate rate in the model.
Transitions between rates often require clock enables at a given rate that are out of
phase with that rate's clock. These out of phase signals are generated with a timing
controller. A multiple clock model may require multiple timing controllers.

The first example uses a multirate CIC Interpolation filter in single clock mode. The
filter's input is also presented as an output for this example to present a model with
output signals running at different rates.

load_system('hdlcoder_clockdemo');

open_system('hdlcoder_clockdemo/DUT');

set_param('hdlcoder_clockdemo', 'SimulationCommand', 'update');

12 Generating HDL Code for Multirate Models

12-28

Single Clock Mode DUT Timing Interface

In single clock mode the HDL code for the DUT will have a set of three signals that do
not appear in the Simulink diagram added to it. Collectively these are a clock bundle,
containing signals for clock, master clock enable, and reset. These signals appear in the
VHDL Entity declaration and are used throughout the generated code.

hdlset_param('hdlcoder_clockdemo', 'Traceability', 'on');

makehdl('hdlcoder_clockdemo/DUT');

Generating HDL for 'hdlcoder_clockdemo/DUT'.

Starting HDL check.

Begin VHDL Code Generation for 'hdlcoder_clockdemo'.

Working on DUT_tc as hdlsrc\hdlcoder_clockdemo\DUT_tc.vhd.

Working on hdlcoder_clockdemo/DUT as hdlsrc\hdlcoder_clockdemo\DUT.vhd.

Generating package file hdlsrc\hdlcoder_clockdemo\DUT_pkg.vhd.

Generating HTML files for code generation report in C:\TEMP\BR2014bd_145981_5832\tp86964efc_658c_4b26_b28e_b45fb6d11bd1\hdlsrc\hdlcoder_clockdemo\html\hdlcoder_clockdemo directory...

Creating HDL Code Generation Check Report file:///C:\TEMP\BR2014bd_145981_5832\tp86964efc_658c_4b26_b28e_b45fb6d11bd1\hdlsrc\hdlcoder_clockdemo\DUT_report.html

HDL check for 'hdlcoder_clockdemo' complete with 0 errors, 0 warnings, and 1 messages.

HDL code generation complete.

Clock Summary Reporting in Single Clock Mode

 Using Multiple Clocks in HDL Coder™

12-29

The file comment block in the HDL DUT code contains Clock Summary information. In
single clock mode as shown here, this report contains a table detailing the sample rates
for each clock enable output signal. The report also contains a table listing each user
output signal and its associated clock enable output signal. Any time a HTML report is
generated, the Clock Summary Report is also generated.

Generating Synchronous Multiclock HDL Code

To generate multiple synchronous clocks for this design, the 'ClockInputs' parameter
must be set to 'multiple'. This may be done on the makehdl command line or by changing
the "Clock inputs" setting to "Multiple" on the HDL Configuration Parameters Global
Settings tab.

makehdl('hdlcoder_clockdemo/DUT', 'ClockInputs', 'multiple');

Generating HDL for 'hdlcoder_clockdemo/DUT'.

Starting HDL check.

Begin VHDL Code Generation for 'hdlcoder_clockdemo'.

Working on DUT_tc_d1 as hdlsrc\hdlcoder_clockdemo\DUT_tc_d1.vhd.

Working on hdlcoder_clockdemo/DUT as hdlsrc\hdlcoder_clockdemo\DUT.vhd.

Generating package file hdlsrc\hdlcoder_clockdemo\DUT_pkg.vhd.

Generating HTML files for code generation report in C:\TEMP\BR2014bd_145981_5832\tp86964efc_658c_4b26_b28e_b45fb6d11bd1\hdlsrc\hdlcoder_clockdemo\html\hdlcoder_clockdemo directory...

Creating HDL Code Generation Check Report file:///C:\TEMP\BR2014bd_145981_5832\tp86964efc_658c_4b26_b28e_b45fb6d11bd1\hdlsrc\hdlcoder_clockdemo\DUT_report.html

HDL check for 'hdlcoder_clockdemo' complete with 0 errors, 0 warnings, and 1 messages.

HDL code generation complete.

Clock Summary Information in Multiclock Mode

The contents of the Clock Summary are different in multiple clock mode. The report now
contains a clock table. This table has one entry for each primary DUT clock. It describes
the relative clock ratio between each clock and the fastest clock in the model. As with
single clock mode, this information is presented both in the HDL DUT file comment block
and the HTML report.

Multiclock Mode and HDL Coder Optimizations

Multiple synchronous clocks can be useful even for a design with only a single Simulink
rate. Various optimizations can require clock rates faster than indicated in the original
model. The following example demonstrates an audio filtering model that applies the
same filter on the left and right channels. By default, HDL Coder would generate two
filter modules in hardware. With this configuration, multiple clock mode still only
generates one clock, just as single clock mode does.

12 Generating HDL Code for Multirate Models

12-30

bdclose hdlcoder_clockdemo;

load_system('hdlcoder_audiofiltering');

open_system('hdlcoder_audiofiltering/Audio filter');

hdlset_param('hdlcoder_audiofiltering', 'ClockInputs', 'Multiple');

hdlset_param('hdlcoder_audiofiltering/Audio filter', 'SharingFactor', 0);

makehdl('hdlcoder_audiofiltering/Audio filter', 'Traceability', 'on');

Generating HDL for 'hdlcoder_audiofiltering/Audio filter'.

Starting HDL check.

Begin VHDL Code Generation for 'hdlcoder_audiofiltering'.

Working on hdlcoder_audiofiltering/Audio filter/Filter_left as hdlsrc\hdlcoder_audiofiltering\Filter_left.vhd.

Working on hdlcoder_audiofiltering/Audio filter as hdlsrc\hdlcoder_audiofiltering\Audio_filter.vhd.

Generating HTML files for code generation report in C:\TEMP\BR2014bd_145981_5832\tp86964efc_658c_4b26_b28e_b45fb6d11bd1\hdlsrc\hdlcoder_audiofiltering\html\hdlcoder_audiofiltering directory...

Creating HDL Code Generation Check Report file:///C:\TEMP\BR2014bd_145981_5832\tp86964efc_658c_4b26_b28e_b45fb6d11bd1\hdlsrc\hdlcoder_audiofiltering\Audio_filter_report.html

HDL check for 'hdlcoder_audiofiltering' complete with 0 errors, 0 warnings, and 0 messages.

HDL code generation complete.

Using Multiple Clock Mode with Resource Sharing

With resource sharing applied to the identical left and right channel atomic subsystems,
only one filter is generated. To meet the Simulink timing requirements, the single filter
is run at twice the clock rate as the original Simulink model, as is shown below. Since the
resource sharing optimization creates a second clock rate, the user can use synchronous
multiple clock mode to provide external clocks for both rates. The Clock Summary Report
shows the timing information for the two clocks.

bdclose gm_hdlcoder_audiofiltering;

hdlset_param('hdlcoder_audiofiltering/Audio filter', 'SharingFactor', 2);

makehdl('hdlcoder_audiofiltering/Audio filter', 'Traceability', 'on');

open_system('gm_hdlcoder_audiofiltering/Audio filter');

set_param('gm_hdlcoder_audiofiltering', 'SimulationCommand', 'update');

Generating HDL for 'hdlcoder_audiofiltering/Audio filter'.

Starting HDL check.

The DUT requires an initial pipeline setup latency. Each output port experiences these additional delays.

 Using Multiple Clocks in HDL Coder™

12-31

Output port 0: 1 cycles.

Output port 1: 1 cycles.

Begin VHDL Code Generation for 'hdlcoder_audiofiltering'.

MESSAGE: The design requires 2 times faster clock with respect to the base rate = 0.00012207.

Working on hdlcoder_audiofiltering/Audio filter/Filter_left as hdlsrc\hdlcoder_audiofiltering\Filter_left.vhd.

Working on mux1_serializer as hdlsrc\hdlcoder_audiofiltering\mux1_serializer.vhd.

Working on Filter_left0_deserializer as hdlsrc\hdlcoder_audiofiltering\Filter_left0_deserializer.vhd.

Working on Audio filter_tc_d1 as hdlsrc\hdlcoder_audiofiltering\Audio_filter_tc_d1.vhd.

Working on hdlcoder_audiofiltering/Audio filter as hdlsrc\hdlcoder_audiofiltering\Audio_filter.vhd.

Generating package file hdlsrc\hdlcoder_audiofiltering\Audio_filter_pkg.vhd.

Generating HTML files for code generation report in C:\TEMP\BR2014bd_145981_5832\tp86964efc_658c_4b26_b28e_b45fb6d11bd1\hdlsrc\hdlcoder_audiofiltering\html\hdlcoder_audiofiltering directory...

Creating HDL Code Generation Check Report file:///C:\TEMP\BR2014bd_145981_5832\tp86964efc_658c_4b26_b28e_b45fb6d11bd1\hdlsrc\hdlcoder_audiofiltering\Audio_filter_report.html

HDL check for 'hdlcoder_audiofiltering' complete with 0 errors, 0 warnings, and 0 messages.

HDL code generation complete.

12-32

13

Generating Bit-True Cycle-Accurate
Models

• “Generated Model and Validation Model” on page 13-2
• “Locate Numeric Differences After Speed Optimization” on page 13-5

13 Generating Bit-True Cycle-Accurate Models

13-2

Generated Model and Validation Model

In this section...

“Generated Model” on page 13-2
“Validation Model” on page 13-3

Generated Model

Before generating code, HDL Coder creates a behavioral model of the HDL code, called
the generated model. The generated model uses HDL-specific block implementations, and
it implements the area and speed optimizations that you specify in your Simulink model.

The generated model is an intermediate model that shows latency and numeric
differences between your Simulink DUT and the generated HDL code. Delays that the
coder inserts are highlighted in the generated model.

After code generation, the generated model is saved in the target folder. By default,
the generated model prefix is gm_. For example, if your model name is myModel, your
generated model name is gm_myModel.

Highlight Color Delay Type

Cyan Block implementation

RAM mapping
Green Constrained output pipelining
Orange Distributed pipelining

Input and output pipelining

Delay balancing

Clock-rate pipelining

Latency Differences

Some block architectures and optimizations introduce latency. For example, for the
Reciprocal block, you can specify HDL block architectures that implement the Newton-
Raphson method. The Newton-Raphson method is iterative, so block architectures that
use it are multicycle and introduce latency at the block rate.

 Generated Model and Validation Model

13-3

Similarly, the resource sharing area optimization time-multiplexes data over a shared
hardware resource, which introduces local multirate and latency at the upsampled rate.

Numeric Differences

HDL block architectures can introduce numeric differences. For example:

• The Newton-Raphson method is an approximation, so if you select a Newton-Raphson
block implementation, the generated model shows a change in numerics.

• HDL implementations for signal processing blocks, such as filters, can change
numerics.

See also “Locate Numeric Differences After Speed Optimization”.

Customize the Generated Model

To customize the generated model, use the following properties with makehdl or
hdlset_param:

• GeneratedModelName

• GeneratedModelNamePrefix

• CodeGenerationOutput

Validation Model

Because the generated model is often substantially different from the original model,
the coder can also create a validation model to compare the original model with the
generated model. The validation model inserts delays at the outputs of the original model
to compensate for latency differences, and compares the outputs of the two models. When
you simulate the validation model, numeric differences in the output data trigger an
assertion.

Using the validation model, you can verify that the output of the optimized DUT is bit-
true to the results produced by the original DUT.

A validation model contains:

• A generated model.
• An original model, with compensating delays inserted.
• Original inputs, routed to both the original model and generated model.

13 Generating Bit-True Cycle-Accurate Models

13-4

• Scopes for comparing and viewing the outputs of the original model and generated
model.

Generate A Validation Model

To generate a validation model:

• In the Configuration Parameters dialog box, in the HDL Code Generation pane,
enable Generate validation model.

• In the HDL Workflow Advisor, in the HDL Code Generation > Generate RTL
Code and Testbench pane, enable Generate validation model.

• Use the GenerateValidationModel property with makehdl or hdlset_param.

 Locate Numeric Differences After Speed Optimization

13-5

Locate Numeric Differences After Speed Optimization

This example first selects a speed-optimized Sum block implementation for simple model
that computes a vector sum. It then examines a generated model and locates the numeric
changes introduced by the optimization.

The model, simplevectorsum_tree, consists of a subsystem, vsum, driven by a vector
input of width 10, with a scalar output. The following figure shows the root level of the
model.

The device under test is the vsum subsystem, shown in the following figure. The
subsystem contains a Sum block, configured for vector summation.

13 Generating Bit-True Cycle-Accurate Models

13-6

The model is configured to use the Tree implementation when generating HDL code for
the Sum block within the vsum subsystem. This implementation, optimized for minimal
latency, generates a tree-shaped structure of adders for the Sum block.

To select a nondefault implementation for an individual block:

1 Right-click the block and select HDL Code > HDL Block Properties .
2 In the HDL Properties dialog box, select the desired implementation from the

Architecture menu.
3 Click Apply and close the dialog box.

After code generation, you can view the validation model,
gm_simplevectorsum_tree_vnl.

 Locate Numeric Differences After Speed Optimization

13-7

The vsum subsystem has been highlighted in cyan. This highlighting indicates that the
subsystem differs in some respect from the vsum subsystem of the original model.

The following figure shows the vsum subsystem in the generated model. Observe that the
Sum block is now implemented as a subsystem, which also appears highlighted.

13 Generating Bit-True Cycle-Accurate Models

13-8

The following figure shows the internal structure of the Sum subsystem.

 Locate Numeric Differences After Speed Optimization

13-9

The generated model implements the vector sum as a tree of adders (Sum blocks). The
vector input signal is demultiplexed and connected, as five pairs of operands, to the five
leftmost adders. The widths of the adder outputs increase from left to right, as required
to avoid overflow in computing intermediate results.

13-10

14

Optimization

• “Automatic Iterative Optimization” on page 14-2
• “Optimization With Constrained Overclocking” on page 14-5
• “Maximum Oversampling Ratio” on page 14-8
• “Maximum Computation Latency” on page 14-10
• “Streaming” on page 14-12
• “Area Reduction with Streaming” on page 14-15
• “Resource Sharing” on page 14-23
• “Check Compatibility for Resource Sharing” on page 14-28
• “Delay Balancing” on page 14-29
• “Resolve Numerical Mismatch with Delay Balancing” on page 14-32
• “Find Feedback Loops” on page 14-36
• “Hierarchy Flattening” on page 14-38
• “Optimize Loops in the MATLAB Function Block” on page 14-41
• “RAM Mapping” on page 14-43
• “RAM Mapping with the MATLAB Function Block” on page 14-44
• “Insert Distributed Pipeline Registers in a Subsystem” on page 14-47
• “Distributed Pipelining and Hierarchical Distributed Pipelining” on page 14-52
• “Constrained Output Pipelining” on page 14-62
• “Pipeline Variables in the MATLAB Function Block” on page 14-64
• “Reduce Critical Path With Distributed Pipelining” on page 14-66
• “Clock-Rate Pipelining” on page 14-73

14 Optimization

14-2

Automatic Iterative Optimization

In this section...

“How Automatic Iterative Optimization Works” on page 14-2
“Automatic Iterative Optimization Output” on page 14-3
“Automatic Iterative Optimization Report” on page 14-3
“Requirements for Automatic Iterative Optimization” on page 14-4
“Limitations of Automatic Iterative Optimization” on page 14-4

Automatic iterative optimization enables you to optimize your design’s clock frequency
without specifying individual optimization options, such as input or output pipelining,
distributed pipelining, or loop unrolling.

There are two ways to use hdlcoder.optimizeDesign to optimize your clock
frequency:

• Best clock frequency: You specify the maximum number of iterations you want HDL
Coder to perform, and the coder iterates to minimize the critical path in your design.

• Target clock frequency: You specify a clock frequency target for your design and
the maximum number of iterations you want HDL Coder to perform. The coder
iterates until it meets your target clock frequency or reaches the maximum number of
iterations.

HDL Coder may also determine that your target clock frequency is not achievable
because your target clock period is less than the latency of the largest atomic
combinational group of logic in your design.

How Automatic Iterative Optimization Works

You specify your clock frequency goal and the maximum number of iterations. HDL
Coder performs the following steps for each iteration:

1 Analyzes the logic in your design.
2 Generates code.
3 Uses the synthesis tool to analyze the generated code, and obtains post-map timing

analysis data.
4 Back annotates the design with the timing analysis data.

 Automatic Iterative Optimization

14-3

5 Inserts pipeline registers to break the critical path.
6 Balances delays.
7 Saves iteration data in a new folder.

When HDL Coder has met your clock frequency goal or it has reached the maximum
number of iterations, it saves the generated code and iteration data in a new folder and
generates a report that describes the final critical path.

Automatic Iterative Optimization Output

When HDL Coder exits the optimization loop, it saves the results of the final iteration in
a folder, hdlsrc/your_model_name/hdlexpl/Final-timestamp.

The final iteration folder contains:

• The generated HDL code, in hdlsrc/your_model_name
• A data file, cpGuidance.mat, that you can use with your original model to

regenerate code without rerunning the iterative optimization.
• The optimization report, summary.html.

HDL Coder also saves

Automatic Iterative Optimization Report

HDL Coder generates a report for the final optimization iteration and saves it in the final
iteration folder, hdlsrc/your_model_name/hdlexpl/Final-timestamp.

The final optimization report, summary.html, contains the following:

• Summary Section, with:

• Final critical path latency.
• Critical path latency and elapsed time for each iteration.

• Diagnostic Section, with:

• Reason for stopping at the final iteration.
• Model or block settings that may reduce the accuracy of the coder’s critical path

analysis.

14 Optimization

14-4

If your model has these settings, remove them where possible, and rerun
hdlcoder.optimizeDesign. Some optimizations, such as distributed pipelining
and constrained output pipeline, change the placement of pipeline registers after
the coder analyzes the critical path.

• Critical path description, which shows signals and components in both the original
model and generated model that are part of the critical path.

You may see a message that says a signal or component on the critical path
cannot be traced back to the original model. HDL Coder may not be able to
map its internal representation of your design back to the original design.
Each optimization iteration changes the internal representation, so the final
representation may have a structure that is very different from your original
design.

Requirements for Automatic Iterative Optimization

Your synthesis tool must be Xilinx ISE or Xilinx Vivado, and your target device must be a
Xilinx FPGA.

Limitations of Automatic Iterative Optimization

• In the current release, automatic iterative optimization does not support Altera
hardware.

• Running automatic iterative optimization can take a long time, depending
on the complexity of your design. To help mitigate the time cost,
hdlcoder.optimizeDesign has an option to regenerate code from a previous run,
or resume from an interrupted run.

• Automatic iterative optimization is available from the command line only.
• HDL Coder uses post-map timing information, which the synthesis tool generates

before performing place and route. Post-map timing information is less accurate than
timing information the synthesis tool generates after place and route, but is faster to
obtain.

See Also
hdlcoder.optimizeDesign

 Optimization With Constrained Overclocking

14-5

Optimization With Constrained Overclocking

In this section...

“Why Constrain Overclocking?” on page 14-5
“When to Use Constrained Overclocking” on page 14-5
“Set Overclocking Constraints” on page 14-6
“Constrained Overclocking Limitations” on page 14-6

Why Constrain Overclocking?

Overclocking can cause your design clock rate to exceed the maximum clock rate
of your target hardware when your original design’s clock rate is high. Without
constrained overclocking, automated speed and area optimizations can modify the design
implementation architecture and often result in local upsampling.

For example, the following optimizations and implementations can result in upsampled
rates in your design:

• RAM mapping
• Streaming
• Resource sharing
• Loop streaming
• Specific block implementations, such as cascade architectures, Newton-Raphson

architectures, and some filter implementations

When to Use Constrained Overclocking

When using area and speed optimizations, you can specify constraints on overclocking
using the Max oversampling and Max computation latency parameters. If you
want a single-rate design, you can use these parameters to prevent overclocking, or limit
overclocking within a range.

Suppose you have a design that does not currently fit in the target hardware, but
is already running at the target device’s maximum clock frequency, and you know
the inputs to your design can change at most every N cycles. You can enable area
optimizations, such as resource sharing, and specify a single-rate implementation
using Max oversampling. You can use Max computation latency to give HDL

14 Optimization

14-6

Coder a latency budget of N cycles to perform the computation. In this situation, HDL
Coder can reuse the shared resource at the original clock rate over N cycles, instead of
implementing the sharing optimization by overclocking the shared resource.

To learn more about the Max oversampling parameter, see “Maximum Oversampling
Ratio”.

To learn more about the Max computation latency parameter, see “Maximum
Computation Latency”.

Set Overclocking Constraints

You can use the MaxOversampling and MaxComputationLatency parameters to
constrain overclocking when optimizing area and speed.

The following table shows how to set MaxOversampling and MaxComputationLatency
for different design implementation results:

Desired implementation result Without Optimizations With Optimizations

Unlimited overclocking MaxOversampling = 0 MaxOversampling = 0

Max computation latency
> 1

Overclocking with
constraints

MaxOversampling > 1 MaxOversampling > 1

MaxComputationLatency >
1

No overclocking (single
rate)

MaxOversampling = 1 MaxOversampling = 1

MaxComputationLatency >
1

To learn how to specify MaxOversampling and MaxComputationLatency, see:

• “Specify Maximum Oversampling Ratio”
• “Specify Maximum Computation Latency”

Constrained Overclocking Limitations

When you constrain overclocking, the following limitations apply:

 Optimization With Constrained Overclocking

14-7

• Your DUT must be single-rate if you set Max oversampling = 1.
• Loop streaming and RAM mapping are disabled when you set Max oversampling =

1, even if Max computation latency > 1.

14 Optimization

14-8

Maximum Oversampling Ratio

In this section...

“What Is the Maximum Oversampling Ratio?” on page 14-8
“Specify Maximum Oversampling Ratio” on page 14-8
“Maximum Oversampling Ratio Limitations” on page 14-9

What Is the Maximum Oversampling Ratio?

The Max oversampling ratio is the maximum ratio of the final design implementation
sample rate to the original sample rate. This parameter enables you to limit clock
frequency.

The following table shows the possible values for the maximum oversampling ratio and
how they affect the design implementation.

Max Oversampling value Effect on design implementation

Inf (default) Sample rate is unconstrained.
1 Single-rate implementation ; no overclocking.

> 1 Oversampling is allowed, but limited to the specified
maximum.

Specify Maximum Oversampling Ratio

Using Configuration Parameters Dialog Box

In the Configuration Parameters dialog box, you can specify the maximum oversampling
ratio:

1 In HDL Code Generation > Global Settings > , click the Optimization tab.
2 For Max oversampling, enter your maximum oversampling ratio.

Using HDL Workflow Advisor

In the HDL Workflow Advisor, you can specify the maximum oversampling ratio:

1 In the HDL Code Generation > Set Code Generation Options > Set Advanced
Options task, click the Optimization tab.

 Maximum Oversampling Ratio

14-9

2 For Max oversampling, enter your maximum oversampling ratio.

On the Command Line

On the command line, set the MaxOversampling property using makehdl or
hdlset_param.

For example, to set the maximum oversampling ratio to 4 for a subsystem, dut, in your
model, mymodel, enter:

hdlset_param ('myModel/dut', 'MaxOversampling', 4)

Maximum Oversampling Ratio Limitations

When the maximum oversampling ratio is 1, the following limitations apply:

• DUT subsystem must be single-rate.
• Delay balancing for the model must be enabled.
• There can be at most 1 subsystem within a subsystem hierarchy that has a nondefault

SharingFactor or StreamingFactor setting.
• You cannot instantiate multiple times a subsystem with a nondefault

SharingFactor or StreamingFactor setting in its subsystem hierarchy.

14 Optimization

14-10

Maximum Computation Latency

In this section...

“What Is Maximum Computation Latency?” on page 14-10
“Specify Maximum Computation Latency” on page 14-11
“Maximum Computation Latency Restrictions” on page 14-11

What Is Maximum Computation Latency?

The Max computation latency parameter enables you to specify a time budget for
HDL Coder when performing a single computation. Within this time budget, HDL Coder
does its best to optimize your design without exceeding the Max oversampling ratio.

When you set a Max computation latency, N, each Simulink time step takes N time
steps in the implemented design.

The following table shows the possible values for the maximum computation latency and
their effect on the design implementation.

Max computation latency
value, N

Description

N = 1 (default) or N < 1 • Design implementation captures the DUT inputs every
clock cycle.

• If maximum oversampling ratio is set to 1, most area
optimizations are not possible.

• If maximum oversampling ratio is greater than 1, coder
implements optimizations with local overclocking.

N > 1 • Design implementation captures the DUT inputs once
every N clock cycles, starting with first cycle after reset.
DUT outputs are held stable for N cycles.

• Coder can perform optimizations without oversampling.
• Note that you cannot set the maximum computation

latency to Inf.

 Maximum Computation Latency

14-11

Specify Maximum Computation Latency

Using Configuration Parameters Dialog Box

In the Configuration Parameters dialog box, you can specify the maximum computation
latency:

1 In HDL Code Generation > Global Settings > , click the Optimization tab.
2 For Max computation latency, enter the number of cycles HDL Coder can use to

implement a computation.

Using HDL Workflow Advisor

In the HDL Workflow Advisor, you can specify the maximum oversampling ratio:

1 In the HDL Code Generation > Set Code Generation Options > Set Advanced
Options task, click the Optimization tab.

2 For Max computation latency, enter the number of cycles HDL Coder can use to
implement a computation.

On the Command Line

On the command line, set the MaxComputationLatency property using makehdl or
hdlset_param.

For example, if you know the inputs change at most every 1000 cycles for your DUT
subsystem, dut, in your model, mymodel, enter:

hdlset_param ('myModel/dut', 'MaxComputationLatency', 1000)

Maximum Computation Latency Restrictions

The maximum computation latency feature has the following restrictions:

• You cannot set the maximum computation latency to Inf.

14 Optimization

14-12

Streaming

In this section...

“What is Streaming?” on page 14-12
“Specify Streaming” on page 14-13
“Requirements and Limitations for Streaming” on page 14-13

What is Streaming?

Streaming is an area optimization in which HDL Coder transforms a vector data path to
a scalar data path (or to several smaller-sized vector data paths). By default, the coder
generates fully parallel implementations for vector computations. For example, the
coder realizes a vector sum as a number of adders, executing in parallel during a single
clock cycle. This technique can consume a large number of hardware resources. With
streaming, the generated code saves chip area by multiplexing the data over a smaller
number of shared hardware resources.

By specifying a streaming factor for a subsystem, you can control the degree to which
such resources are shared within that subsystem. Where the ratio of streaming
factor (Nst) to subsystem data path width (Vdim) is 1:1, HDL Coder implements an
entirely scalar data path. A streaming factor of 0 (the default) produces a fully parallel
implementation (i.e., without sharing) for vector computations. Depending on the width
of the data path, you can also specify streaming factors between these extrema.

If you know the maximal vector dimensions and the sample rate for a subsystem, you can
compute the possible streaming factors and resulting sample rates for the subsystem.
However, even if the requested streaming factor is mathematically possible, the
subsystem must meet other criteria for streaming. See “Requirements and Limitations
for Streaming” on page 14-13 for details.

By default, when you apply the streaming optimization, HDL Coder oversamples the
shared hardware resource in order to generate an area-optimized implementation with
the original latency. You can limit the oversampling ratio to meet target hardware clock
constraints. For details, see “Optimization With Constrained Overclocking”.

You can generate and use the validation model to verify that the output of the optimized
DUT is bit-true to the results produced by the original DUT. To learn more about the
validation model, see “Validation Model” on page 13-3.

 Streaming

14-13

Specify Streaming

You apply streaming at the subsystem level. Specify the streaming factor by setting the
subsystem HDL parameter StreamingFactor. You can set StreamingFactor in the
HDL Properties dialog for a subsystem, as shown in the following figure.

Alternatively, you can set StreamingFactor using the hdlset_param function, as in
the following example.
dut = 'ex_pdcontroller_multi_instance/Controller';

hdlset_param(dut,'StreamingFactor', 24);

Requirements and Limitations for Streaming

This section describes the criteria for streaming that subsystems must meet.

Blocks That Support Streaming

HDL Coder supports a large number of blocks for streaming. As a best practice, run the
checkhdl function before generating streaming code for a subsystem. checkhdl reports
blocks in your subsystem that are incompatible with streaming. If you initiate streaming
code generation for a subsystem that contains incompatible blocks, the streaming request
fails.

14 Optimization

14-14

HDL Coder cannot apply the streaming optimization to a model reference.

How To Determine Streaming Factor and Sample Time

In a given subsystem, if Nst is the streaming factor, and Vdim is the maximum vector
dimension, then the data path of the resultant streamed subsystem can be either of the
following:

• Of width Vstream = (Vdim/Nst)
• Scalar

If the original subsystem operated with a sample time S, then the streamed subsystem
operates with a sample time of S / Nst.

Checks and Requirements for Streaming Subsystems

Before applying streaming, HDL Coder performs a series of checks on the subsystems to
be streamed. You can stream a subsystem if it meets all the following criteria:

• The streaming factor Nst must be a perfect divisor of the vector width Vdim.
• The subsystem must be a single-rate subsystem that does not contain rate changes or

rate transitions.

Because of this requirement, do not specify HDL implementations that are inherently
multirate for blocks within the subsystem. For example, using the Cascade
implementation (for the Sum, Product, MinMax, and other blocks) is not allowed
within a streamed subsystem.

• All vector data paths in the subsystem must have the same widths.
• The subsystem must not contain nested subsystems.
• All blocks within the subsystem must support streaming. HDL Coder supports a large

number of blocks for streaming. As a best practice, run checkhdl before generating
streaming code for a subsystem. checkhdl reports blocks in your subsystem that
are incompatible with streaming. If you initiate streaming code generation for a
subsystem that contains incompatible blocks, the streaming request will fail.

If the requested streaming factor cannot be implemented, HDL Coder generates non-
streaming code. It is good practice to generate an Optimization Report. The Streaming
and Sharing page of the report provides information about conditions that prevent
streaming.

 Area Reduction with Streaming

14-15

Area Reduction with Streaming

This example illustrates:

• Specification of a streaming factor for a subsystem
• Generation of HDL code and a validation model for the subsystem.

The following example is a single-rate model that drives the Controller subsystem
with a vector signal of width 24.

The following figure shows the Controller subsystem, which is the DUT in this
example.

By generating HDL code and a report on resource utilization, you can determine how
many multipliers, adders/subtractors, registers, RAMs, and multiplexers are generated
from this DUT in the default case. To do so, type the following commands:
dut = 'ex_pdcontroller_multi_instance/Controller';

hdlset_param(dut,'StreamingFactor', 0);

makehdl(dut,'ResourceReport','on');

The following figure shows the Resource Utilization Report for the Controller subsystem.
The report shows the number of multipliers, adders/subtractors, registers, RAMs, and
multiplexers that the HDL Coder software generates.

14 Optimization

14-16

If you choose an optimal StreamingFactor for the DUT, you can achieve a drastic
reduction in the number of multipliers and adders/subtractors generated. The following

 Area Reduction with Streaming

14-17

commands set StreamingFactor to the largest possible value for this subsystem and
then generate VHDL code and a Resource Utilization Report.
dut = 'ex_pdcontroller_multi_instance/Controller';

hdlset_param(dut,'StreamingFactor', 24);

makehdl(dut,'ResourceReport','on', 'GenerateValidationModel','on');

During code generation, HDL Coder reports latency in the generated model. It also
reports generation of the validation model.
Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 0 messages.

The DUT requires an initial pipeline setup latency. Each output port experiences

 these additional delays

Output port 0: 1 cycles

Generating new validation model: gm_ex_pdcontroller_multi_instance4_vnl.mdl

Validation Model Generation Complete.

Begin VHDL Code Generation

MESSAGE: The design requires 24 times faster clock with respect to the base rate = 2.

Working on ex_pdcontroller_multi_instance/Controller/err_d_serializercomp

 as hdlsrc\err_d_serializercomp.vhd

Working on ex_pdcontroller_multi_instance/Controller/Saturation_out1_serialcomp

 as hdlsrc\Saturation_out1_serialcomp.vhd

Working on ex_pdcontroller_multi_instance/Controller/kconst_serializercomp

 as hdlsrc\kconst_serializercomp.vhd

Working on ex_pdcontroller_multi_instance/Controller/kconst_serializercomp1

 as hdlsrc\kconst_serializercomp1.vhd

Working on Controller_tc as hdlsrc\Controller_tc.vhd

Working on ex_pdcontroller_multi_instance/Controller as hdlsrc\Controller.vhd

Generating package file hdlsrc\Controller_pkg.vhd

Generating HTML files for code generation report in

 C:\hdlsrc\html\ex_pdcontroller_multi_instance directory ...

HDL Code Generation Complete.

After code generation completes, you can view the results of the StreamingFactor
optimization. In the Resource Utilization Report, you can see that HDL Coder generates
only 2 multipliers and 2 adders for the Controller subsystem.

14 Optimization

14-18

HDL Coder also produces a Streaming and Sharing report that shows:

• The StreamingFactor value that you specified

 Area Reduction with Streaming

14-19

• The other usable StreamingFactor values for this subsystem
• Latency (delays) introduced in the generated model
• A hyperlink to the validation model, if generated

The Validation Model

The following figure shows the validation model generated for the Controller subsystem.

14 Optimization

14-20

The lower section of the validation model contains a copy of the original DUT
(Controller_vnl). This single-rate subsystem runs at its original rate.

The upper section of the validation model contains the streaming version of the DUT
(Controller). Internally, this subsystem runs at a different rate than the original DUT.

The following figure shows the interior of the Controller subsystem.

Inspection of the Controller subsystem shows that it is a multirate subsystem, having
two rates that operate as follows:

• Inputs and outputs run at the same rate as the exterior model.
• Dual-rate Serializer blocks receive vector data at the original rate and output a

stream of scalar values at the higher (24x) rate.

 Area Reduction with Streaming

14-21

• Interior blocks between Serializers and Deserializer run at the higher rate.
• The Deserializer block receives scalar values at the higher rate and buffers values

into a 24-element output vector running at the original rate.

The Compare subsystem (see following figure) receives and compares outputs from
the Controller and Controller_vnl subsystems. To compensate for the latency of the
Controller subsystem (reported during code generation), input from the Controller_vnl
subsystem is delayed by one clock cycle. A discrepancy between the outputs of the two
subsystems triggers an assertion.

To verify that a generated model with streaming is bit-true to its original counterpart in
a validation model:

1 Open the Compare subsystem.
2 Double click the Double click to turn on/off all scopes button.
3 Run the validation model.
4 Observe the compare:Out1 scope. The error signal display should show a line

through zero, indicating that the data comparisons were equal.

14 Optimization

14-22

 Resource Sharing

14-23

Resource Sharing

In this section...

“What Is Resource Sharing?” on page 14-23
“Benefits and Costs of Resource Sharing” on page 14-24
“Specify Resource Sharing” on page 14-24
“Requirements for Resource Sharing” on page 14-24
“Resource Sharing Information in Reports” on page 14-27

What Is Resource Sharing?

Resource sharing is an area optimization in which HDL Coder identifies multiple
functionally equivalent resources within a subsystem or MATLAB Function block and
replaces them with a single resource. The coder time-multiplexes the data over the
shared resource to perform the same operations.

When you specify a sharing factor, N, for a subsystem, HDL Coder tries to identify up
to N shareable resources, and, by default, oversamples by a factor of N to generate an
area-optimized implementation with the original latency. If the coder cannot identify N
shareable resources, it shares as many as it can, but still oversamples by a factor of N.

You can limit the oversampling ratio to meet target hardware clock constraints. For
details, see “Optimization With Constrained Overclocking”.

You can generate and use the validation model to verify that the output of the optimized
DUT is bit-true to the results produced by the original DUT. To learn more about the
validation model, see “Validation Model” on page 13-3.

Shareable Resources In Different Blocks

If you specify a nonzero sharing factor for a MATLAB Function block, HDL Coder tries to
identify and share functionally equivalent multipliers.

If you specify a nonzero sharing factor for a subsystem, HDL Coder tries to identify and
share functionally equivalent instances of the following types of blocks:

• Gain
• Product
• Atomic Subsystem

14 Optimization

14-24

• MATLAB Function
• Model reference

Benefits and Costs of Resource Sharing

Resource sharing can substantially reduce your chip area. For example, the generated
code may use one multiplier to perform the operations of several identically configured
multipliers from the original model.

However, resource sharing has the following costs:

• Uses more multiplexers and may use more registers.
• Reduces opportunities for distributed pipelining or retiming, because HDL Coder does

not pipeline across clock rate boundaries.
• Multiplies the clock rate of the target hardware by the sharing factor.

Specify Resource Sharing

To open an example showing how to use resource sharing, enter:

hdlcoder_sharing_optimization

Specify Resource Sharing from the UI

To specify resource sharing from the UI:

1 Right-click the subsystem or MATLAB Function block.
2 Select HDL Code > HDL Block Properties.
3 In the SharingFactor field, enter the number of shareable resources.

Specify Resource Sharing from the Command Line

Set the SharingFactor using hdlset_param, as in the following example.
dut = 'ex_dimcheck/Channel';

hdlset_param(dut,'SharingFactor',3);

Requirements for Resource Sharing

On a Subsystem block, model reference, or MATLAB Function block, you can specify the
resource sharing optimization.

 Resource Sharing

14-25

The DUT subsystem must not contain blocks with Sample time set to Inf. For example,
Constant blocks must have Sample time set to -1. To set the sample time to -1 for all
Constant blocks in your DUT subsystem, use the following MATLAB code:

blks = find_system(dut, 'BlockType', 'Constant');

for i = 1:length(blks)

 set_param(blks{i}, 'SampleTime', '-1');

end

Blocks to be shared within a subsystem have the following requirements:

• Single-rate.
• If the block is within a feedback loop, at least one Unit Delay or Delay block connected

to each output port.
• If you set the maximum oversampling ratio to 1, shared resources cannot be inside

feedback loops.

If you want to share Atomic Subsystem blocks within a subsystem:

• The only state elements that these blocks can contain are Unit Delay and Delay
blocks. Unit Delay and Delay blocks must have the Initial condition parameter set
to 0.

• These blocks must not contain a subsystem that does not meet the requirements for
resource sharing.

If you want to share MATLAB Function blocks within a subsystem, they must not use:

• Persistent variables
• Loop streaming
• Output pipelining

If you want to share model reference instances within a subsystem, all model references
that point to the same referenced model must have the same rate after optimizations and
rate propagation. The model reference final rate may differ from the original rate, but all
model references that point to the same referenced model must have the same final rate.

Functionally Equivalent Blocks for Resource Sharing

Block Type Functionally equivalent if they have...

Product • Equivalent input and output data types
• Equivalent rounding and saturation modes

14 Optimization

14-26

Block Type Functionally equivalent if they have...

Gain • Equivalent input and output data types
• Equivalent rounding and saturation modes

Gain constants can have different values, but they must have
the same data type.

Atomic Subsystem

MATLAB Function

Model reference

• The same Simulink checksum. For atomic
subsystems and MATLAB Function blocks,
use Simulink.Subsystem.getChecksum to
determine the checksum. For Model references, use
Simulink.BlockDiagram.getChecksum.

• The same HDL block properties.

In addition, if you use the DSPStyle block property, HDL Coder does not share
multipliers that have different synthesis attribute settings.

Data Dependency Limitation

You must specify the sharing factor as the exact number of shareable resources when
both of the following are true:

• A shareable resource depends on output data from another shareable resource.
• One or more outputs of the a shareable resource is a vector.

In this situation, if your sharing factor does not match the actual number of shareable
resources, HDL Coder does not perform resource sharing.

Limitations for Atomic Subsystem Sharing

You cannot apply resource sharing to a subset of instances for a particular atomic
subsystem; you must share all instances. If you want to share a subset of atomic
subsystem instances, change the remaining instances to virtual subsystems.

The HDL Coder software cannot apply resource sharing to atomic subsystems that
contain state elements other than the Delay and Unit Delay blocks. Therefore,
you cannot share atomic subsystems that contain the following blocks or block
implementations:

• Detect Change
• Discrete Transfer Fcn

 Resource Sharing

14-27

• HDL FFT
• HDL FIFO
• Math Function (conj, hermitian, transpose)
• MATLAB Function blocks that contain persistent variables
• Sqrt
• Unit Delay Resettable
• Unit Delay Enabled Resettable
• Cascade architecture (Minmax, Product, Sum)
• CORDIC architecture
• Reciprocal Newton architecture
• Filter blocks
• Communications System Toolbox blocks
• DSP System Toolbox blocks
• Stateflow blocks
• Blocks that are not supported for delay balancing. For details, see “Delay Balancing

Limitations”.

Resource Sharing Information in Reports

If you generate a code generation report, for each subsystem that implements sharing,
the report includes the following information:

• Success: Provides a list of resource usage changes caused by sharing.
• Failure: Identifies which criterion was violated.
• Latency changes.

Related Examples
• Resource Sharing For Area Optimization
• Resource Sharing and Streaming with Oversampling Constraints

../examples/resource-sharing-for-area-optimization.html
../examples/resource-sharing-and-streaming-with-oversampling-constraints.html

14 Optimization

14-28

Check Compatibility for Resource Sharing

To determine whether or not your model is compatible for resource sharing:

1 Before generating code, run checkhdl and eliminate general compatibility issues.
2 In the Configuration Parameters dialog box, on the HDL Code Generation pane,

select Generate optimization report.
3 Set the sharing factor for the DUT and generate code.
4 After code generation completes, inspect the Optimization Report. The report shows

incompatible blocks or other conditions that can cause a resource sharing request to
fail.

5 If the Optimization Report shows problems, fix them and repeat these steps.

See also “Requirements for Resource Sharing”.

 Delay Balancing

14-29

Delay Balancing

In this section...

“Why Use Delay Balancing” on page 14-29
“Specify Delay Balancing” on page 14-29
“Delay Balancing Limitations” on page 14-31

Why Use Delay Balancing

The HDL Coder software supports several optimizations, block implementations, and
options that introduce discrete delays into the model, with the goal of more efficient
hardware usage or achieving higher clock rates. Examples include:

• Optimizations: Optimizations such as output pipelining, streaming, or resource
sharing can introduce delays.

• Cascading: Some blocks support cascade implementations, which introduce a cycle of
delay in the generated code.

• Block implementations: Some block implementations inherently introduce delays in
the generated code. “Resolve Numerical Mismatch with Delay Balancing” on page
14-32 discusses one such implementation.

When optimizations or block implementation options introduce delays along the critical
path in a model, the numerics of the original model and generated model or HDL code
may differ because equivalent delays are not introduced on other, parallel signal paths.
Manual insertion of compensating delays along the other paths is possible, but is error
prone and does not scale well to very large models with many signal paths or multiple
sample rates.

To help you solve this problem, HDL Coder supports delay balancing. When you enable
delay balancing, if the coder detects introduction of new delays along one path, it inserts
matching delays on the other paths. When delay balancing is enabled, the generated
model is functionally equivalent to the original model.

Specify Delay Balancing

You can set delay balancing for an entire model. For finer control, you can also set delay
balancing for subsystems within the top-level DUT subsystem.

14 Optimization

14-30

Set Delay Balancing For a Model

Use the following makehdl properties to set delay balancing for a model:

• BalanceDelays: By default, model-level delay balancing is enabled, and subsystems
within the model inherit the model-level setting. To learn how to set delay balancing
for a model, see BalanceDelays.

• GenerateValidationModel: By default, validation model generation is disabled.
When you enable delay balancing, generate a validation model to view delays and
other differences between your original model and the generated model. To learn how
to enable validation model generation, see GenerateValidationModel.

For example, the following commands generate HDL code with delay balancing and
generate a validation model.
dut = 'ex_rsqrt_delaybalancing/Subsystem';

makehdl(dut,'BalanceDelays','on','GenerateValidationModel','on');

For more information about the validation model, see “Validation Model”.

Disable Delay Balancing For a Subsystem

You can disable delay balancing for an entire model, or disable a subsystem within the
top-level DUT subsystem. For example, if you do not want to balance delays for a control
path, you can put the control path in a subsystem, and disable delay balancing for that
subsystem.

To disable delay balancing for a subsystem within the top-level DUT subsystem, you
must disable delay balancing at the model level. Note that when you disable delay
balancing for the model, the validation model does not compensate for latency inserted
in the generated model due to optimizations or block implementations. The validation
model may therefore show mismatches between the original model and generated model.

To disable delay balancing for a subsystem within the top-level DUT subsystem:

1 Disable delay balancing for the model.
2 Enable delay balancing for the top-level DUT subsystem.
3 Disable delay balancing for a subsystem within the DUT subsystem.

To learn how to set delay balancing for a subsystem, see “Set Delay Balancing For a
Subsystem”.

 Delay Balancing

14-31

Delay Balancing Limitations

The following blocks do not support delay balancing:

• Cosimulation
• Data Type Duplicate
• Decrement To Zero
• Frame Conversion
• Ground
• HDL FFT
• LMS Filter
• Model Reference
• To VCD File
• Magnitude-Angle to Complex

The following block implementations do not currently support delay balancing:

• hdldefaults.ConstantSpecialHDLEmission
• hdldefaults.NoHDL

14 Optimization

14-32

Resolve Numerical Mismatch with Delay Balancing

This example shows a simple case where the VHDL implementation of a block introduces
delays that cause a numerical mismatch between the original DUT and the generated
model and HDL code. The example then demonstrates how to use delay balancing to fix
the mismatch.

The following figure shows the DUT for the ex_rsqrt_delaybalancing model. The
DUT is a simple multirate subsystem that includes a Reciprocal Square Root block,
Sqrt. A Rate Transition block downsamples the output signal to a lower sample rate.

Generate HDL code without delay balancing and generate a validation model:

dut = 'ex_rsqrt_delaybalancing/Subsystem';

makehdl(dut,'BalanceDelays','off','GenerateValidationModel','on');

Examination of the generated model shows that HDL Coder has implemented the Sqrt
block as a subsystem:

The following figure shows that the generated Sqrt subsystem introduces a total
of 5 cycles of delay. (This behavior is inherent to the Reciprocal Square Root block

 Resolve Numerical Mismatch with Delay Balancing

14-33

implementation.) These delays map to registers in the generated HDL code when
UseRAM is off.

The scope in the following figure shows the results of a comparison run between the
original and generated models. The scope displays the following signals, in descending
order:

• The outputs from the original model
• The outputs from the generated model
• The difference between the two

The difference is nonzero, indicating a numerical mismatch between the original and
generated models.

14 Optimization

14-34

Two factors cause this discrepancy:

• The input signal branches into two parallel paths (to the Sqrt and product blocks)
but only the branch to the Sqrt block introduces delays.

• The downsampling caused by the rate transition drops samples.

You can solve these problems by manually inserting delays in the generated model.
However, using the coder's delay balancing capability produces more consistent results.

Generate HDL code with delay balancing and generate a validation model:
dut = 'ex_rsqrt_delaybalancing/Subsystem';

makehdl(dut,'BalanceDelays','on','GenerateValidationModel','on');

The following figure shows the validation model. The lower subsystem is identical to the
original DUT. The upper subsystem represents the HDL implementation of the DUT.

 Resolve Numerical Mismatch with Delay Balancing

14-35

The upper subsystem (shown in the following figure) represents the HDL implementation
of the DUT. To balance the 5-cycle delay from the Sqrt subsystem, HDL Coder has
inserted a 5-cycle delay on the parallel data path. The coder has also inserted a 3-cycle
delay before the Rate Transition to offset the effect of downsampling.

14 Optimization

14-36

Find Feedback Loops

In this section...

“Using the HDL Workflow Advisor” on page 14-36
“Using the Configuration Parameters Dialog Box” on page 14-37
“Using the Command Line” on page 14-37
“Remove Highlighting” on page 14-37
“Limitations” on page 14-37

Feedback loops in your Simulink design can inhibit delay balancing and optimizations
such as resource sharing and streaming.

To find feedback loops in your design that are inhibiting optimizations, you can generate
and run a MATLAB script that highlights one or more feedback loops in your original
model and the generated model. When you run the script, different feedback loops are
highlighted in different colors. The feedback loop highlighting script is saved in the same
target folder as the HDL code.

After you generate code, if feedback loops are inhibiting optimizations, the command
window shows a link you can click to highlight feedback loops. If you generate an
Optimization Report, the report also contains a link you can click to highlight feedback
loops.

The script can highlight feedback loops that are inhibiting the following optimizations:

• Resource sharing
• Streaming
• MATLAB variable pipelining
• Delay balancing

Using the HDL Workflow Advisor

In the HDL Code Generation > Set Code Generation Options > Set Advanced
Options > Diagnostics tab, select Highlight feedback loops inhibiting delay
balancing and optimizations.

To customize the script name, enter a file name in the Feedback loop highlighting
script file name field.

 Find Feedback Loops

14-37

Using the Configuration Parameters Dialog Box

In the HDL Code Generation > Global Settings > Diagnostics tab, select Highlight
feedback loops inhibiting delay balancing and optimizations.

To customize the script name, enter a file name in the Feedback loop highlighting
script file name field.

Using the Command Line

To generate a feedback loop highlighting script programmatically, use the
HighlightFeedbackLoops and HighlightFeedbackLoopsFile properties with
makehdl or hdlset_param.

For example:

• To generate a feedback loop highlight script for a model, myModel, enter:

hdlset_param ('myModel', 'HighlightFeedbackLoops', 'on');

• To generate a feedback loop highlighting script with the file name,
myHighlightScript, for a model, myModel, enter:

hdlset_param ('myModel', 'HighlightFeedbackLoops', 'on');

hdlset_param ('myModel', 'HighlightFeedbackLoopsFile', 'myHighlightScript');

Remove Highlighting

To turn off highlighting, in Simulink, select Display > Remove Highlighting.

Limitations

Feedback loop highlighting cannot highlight blocks that have names that contain a single
quote (').

See Also
HighlightFeedbackLoops | HighlightFeedbackLoopsFile

More About
• “Optimization Report”

14 Optimization

14-38

Hierarchy Flattening

In this section...

“What Is Hierarchy Flattening?” on page 14-38
“When To Flatten Hierarchy” on page 14-38
“Prerequisites For Hierarchy Flattening” on page 14-38
“Options For Hierarchy Flattening” on page 14-39
“How To Flatten Hierarchy” on page 14-39
“Limitations For Hierarchy Flattening” on page 14-40

What Is Hierarchy Flattening?

Hierarchy flattening enables you to remove subsystem hierarchy from the HDL code
generated from your design.

The HDL Coder software considers blocks within a flattened subsystem to be at the same
level of hierarchy, and no longer grouped into separate subsystems. This consideration
allows the coder to reorganize blocks for optimization across the original hierarchical
boundaries, while preserving functionality.

When To Flatten Hierarchy

Flatten hierarchy to:

• Enable more extensive area and speed optimization.
• Reduce the number of HDL output files. For every subsystem flattened, HDL Coder

generates one less HDL output file.

Avoid flattening hierarchy if you want to preserve one-to-one mapping from subsystem
name to HDL module or entity name. Not flattening hierarchy makes the HDL code
more readable.

Prerequisites For Hierarchy Flattening

To flatten hierarchy, a subsystem must have the following block properties.

 Hierarchy Flattening

14-39

Property Required value

DistributedPipelining 'off'

StreamingFactor 0
SharingFactor 0

To flatten hierarchy, you must also have the MaskParameterAsGeneric global property
set to 'off'. For more information, see “MaskParameterAsGeneric”.

Options For Hierarchy Flattening

By default, a subsystem inherits its hierarchy flattening setting from the parent
subsystem. However, you can enable or disable flattening for individual subsystems.

The hierarchy flattening options for a subsystem are listed in the following table.

Hierarchy Flattening Setting Description

inherit (default) Use the hierarchy flattening setting of the parent subsystem. If this
subsystem is the highest-level subsystem, do not flatten.

on Flatten this subsystem.
off' Do not flatten this subsystem, even if the parent subsystem is

flattened.

How To Flatten Hierarchy

To set hierarchy flattening using the HDL Block Properties dialog box:

1 Right-click the subsystem.
2 Select HDL Code > HDL Block Properties .
3 For FlattenHierarchy, select on, off, or inherit.

To set hierarchy flattening from the command line, use hdlset_param. For example, to
turn on hierarchy flattening for a subsystem, my_dut:

hdlset_param('my_dut', 'FlattenHierarchy', 'on')

See also “hdlset_param”.

14 Optimization

14-40

Limitations For Hierarchy Flattening

A subsystem cannot be flattened if the subsystem is:

• Atomic and instantiated in the design more than once.
• A black box implementation or model reference.
• A triggered subsystem when TriggerAsClock is enabled
• A masked subsystem.

Note: This option removes subsystem boundaries before code generation. It does not
necessarily generate HDL code with a completely flat hierarchy.

 Optimize Loops in the MATLAB Function Block

14-41

Optimize Loops in the MATLAB Function Block

In this section...

“Loop Streaming” on page 14-41
“Loop Unrolling” on page 14-41
“MATLAB Function Block Loop Optimization Options” on page 14-41
“How to Optimize MATLAB Function Block Loops” on page 14-42
“Limitations for MATLAB Function Block Loop Optimization” on page 14-42

With loop optimization you can stream or unroll loops in generated code. Loop streaming
optimizes for area; loop unrolling optimizes for speed.

Loop Streaming

The HDL Coder software streams a loop by instantiating the loop body once and using
that instance for each loop iteration.

The advantage of loop streaming is decreased area because the loop body is instantiated
only once. The disadvantage of loop streaming is lower speed.

Loop Unrolling

TheHDL Coder software unrolls a loop by instantiating multiple instances of the loop
body in the generated code.

The unrolled code can participate in distributed pipelining and resource sharing
optimizations. Distributed pipelining can increase speed; resource sharing can decrease
area.

Overall, however, the multiple instances created by loop unrolling are likely to increase
area. Loop unrolling also makes the code less readable.

MATLAB Function Block Loop Optimization Options

The loop optimization options for a MATLAB Function block are listed in the following
table.

14 Optimization

14-42

Loop Optimization Setting Description

none (default) Do not optimize loops.
Unrolling Unroll loops.
Streaming Stream loops.

How to Optimize MATLAB Function Block Loops

To select a loop optimization using the HDL Block Properties dialog box:

1 Right-click the MATLAB Function block.
2 Select HDL Code > HDL Block Properties .
3 For LoopOptimization, select none, Unrolling, or Streaming.

To select a loop optimization from the command line, use hdlset_param. For example,
to turn on loop streaming for a MATLAB Function block, my_mlfn:

hdlset_param('my_mlfn', 'LoopOptimization', 'Streaming')

See also “hdlset_param”.

Limitations for MATLAB Function Block Loop Optimization

The HDL Coder software cannot stream a loop if:

• The loop index counts down. The loop index must increase by 1 on each iteration.
• There are 2 or more nested loops at the same level of hierarchy within another loop.
• Any particular persistent variable is updated both inside and outside a loop.
• A persistent variable that is initialized to a nonzero value is updated inside the loop.

HDL Coder can stream the loop when the persistent variable is:

• Updated inside the loop and read outside the loop.
• Read within the loop and updated outside the loop.

 RAM Mapping

14-43

RAM Mapping

RAM mapping is an area optimization. You can map to RAMs in HDL code by using:

• UseRAM to map delays to RAM. For details, see “UseRAM”.
• MapPersistentVarsToRAM to map persistent arrays in a MATLAB Function block

to RAM. For details, see “MapPersistentVarsToRAM”.
• RAM blocks from the HDL Operations library:

• Dual Port RAM
• Dual Rate Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM

• Blocks with a RAM implementation.

14 Optimization

14-44

RAM Mapping with the MATLAB Function Block

This example shows how to map persistent arrays to RAM using the
MapPersistentVarsToRAM block-level parameter. The resource report shows the area
improvement with RAM mapping.

1 Open the hdlcoder_sobel_serial_eml model.

hdlcoder_sobel_serial_eml

The sobel_edge_hardware subsystem contains sobel_edge_eml, a MATLAB
Function block that uses persistent arrays. To view the MATLAB code, double-click
the sobel_edge_eml block.

2 In the sobel_edge_hardware subsystem, right-click the sobel_edge_eml block
and select HDL Code > HDL Block Properties.

3 Set MapPersistentVarsToRAM to off and click OK to disable RAM mapping.
4 In the Simulation > Model Configuration Parameters > HDL Code

Generation pane, enable Generate resource utilization report and click Apply.
5 Click Generate to generate HDL code. The Code Generation Report appears.
6 Select High-level Resource Report.

 RAM Mapping with the MATLAB Function Block

14-45

Note that the design uses 218 registers and no RAM.
7 Now, enable RAM mapping: right-click the sobel_edge_eml block, select HDL

Code > HDL Block Properties, and set MapPersistentVarsToRAM to on. Click
OK.

8 In the Simulation > Model Configuration Parameters > HDL Code
Generation pane, click Generate to generate HDL code. The Code Generation
Report appears.

9 Select High-level Resource Report.

Note that the design now uses 25 registers and 2 RAMs.

14 Optimization

14-46

To learn about design patterns that enable efficient RAM mapping of persistent arrays in
MATLAB Function blocks, see the eml_hdl_design_patterns/RAMs library.

For more information, see:

• “ MATLAB Function Block Design Patterns for HDL”
• “MapPersistentVarsToRAM”

 Insert Distributed Pipeline Registers in a Subsystem

14-47

Insert Distributed Pipeline Registers in a Subsystem

This example shows how to use distributed pipelining with the dct8_fixed model.

This example uses the following optimizations:

• Output pipelining
• Distributed pipelining

Open the model by typing dct8_fixed at the MATLAB prompt. The DUT is the
dct8_fixed/OneD_DCT8 subsystem.

Set DistributedPipelining to off and OutputPipeline to 6 to insert 6 pipeline stages
at the outputs of the DUT.

14 Optimization

14-48

The generated model shows the placement of pipeline registers as highlighted delays at
the outputs of the DUT. For more information about generated models, see “Generated
Model and Validation Model”.

 Insert Distributed Pipeline Registers in a Subsystem

14-49

Set DistributedPipelining to on and OutputPipeline to 6 to distribute 6 pipeline
stages for each signal path in the DUT.

14 Optimization

14-50

The generated model shows the distribution of pipeline registers as highlighted delays
within each signal path. There 6 pipeline registers for each path.

 Insert Distributed Pipeline Registers in a Subsystem

14-51

14 Optimization

14-52

Distributed Pipelining and Hierarchical Distributed Pipelining

In this section...

“What is Distributed Pipelining?” on page 14-52
“Benefits and Costs of Distributed Pipelining” on page 14-54
“Requirements for Distributed Pipelining” on page 14-55
“Specify Distributed Pipelining” on page 14-55
“Limitations of Distributed Pipelining” on page 14-55
“What is Hierarchical Distributed Pipelining?” on page 14-57
“Benefits of Hierarchical Distributed Pipelining” on page 14-60
“Specify Hierarchical Distributed Pipelining” on page 14-60
“Limitations of Hierarchical Distributed Pipelining” on page 14-61
“Distributed Pipelining Workflow” on page 14-61
“Selected Bibliography” on page 14-61

What is Distributed Pipelining?

Distributed pipelining, or register retiming, is a speed optimization that moves existing
delays within in a design to reduce the critical path while preserving functional behavior.

The HDL Coder software uses an adaptation of the Leiserson-Saxe retiming algorithm.

For example, in the following model, there is a delay of 2 at the output.

 Distributed Pipelining and Hierarchical Distributed Pipelining

14-53

The following diagram shows the model after distributed pipelining redistributes the
delay to reduce the critical path.

14 Optimization

14-54

Benefits and Costs of Distributed Pipelining

Distributed pipelining can reduce your design’s critical path, enabling you to use a higher
clock rate and increase throughput.

However, distributed pipelining requires your design to contain a number of delays. If
you need to insert additional delays in your design to enable distributed pipelining, this
increases the area and the initial latency of your design.

 Distributed Pipelining and Hierarchical Distributed Pipelining

14-55

Requirements for Distributed Pipelining

Distributed pipelining requires your design to contain delays or registers that can be
redistributed. You can use input pipelining or output pipelining to insert more registers.

If your design does not meet your timing requirements at first, try adding more delays or
registers to improve your results.

Specify Distributed Pipelining

You can specify distributed pipelining for a:

• Subsystem.
• MATLAB Function block within a subsystem. For details, see “Distributed Pipeline

Insertion for MATLAB Function Blocks”.
• Stateflow chart within a subsystem.

To specify distributed pipelining using the UI:

1 Right-click the block and select HDL Code > HDL Block Properties.
2 Set DistributedPipelining to on and click OK.

To enable distributed pipelining, on the command line, enter:

hdlset_param('path/to/block', 'DistributedPipelining', 'on')

To disable distributed pipelining, on the command line, enter:

hdlset_param('path/to/block', 'DistributedPipelining', 'off')

Tip Output data might be in an invalid state initially if you insert pipeline registers. To
avoid test bench errors resulting from initial invalid samples, disable output checking for
those samples. For more information, see:

• “Ignore output data checking (number of samples)”

• IgnoreDataChecking

Limitations of Distributed Pipelining

The distributed pipelining optimization has the following limitations:

14 Optimization

14-56

• Your pipelining results might not be optimal in hardware because the operator
latencies in your target hardware may differ from the estimated operator latencies
used by the distributed pipelining algorithm.

• The HDL Coder software generates pipeline registers at the outputs in the following
situations instead of distributing the registers to reduce critical path:

• A MATLAB Function block or Stateflow chart contains a matrix with a statically
unresolvable index.

• A Stateflow chart contains a state or local variable.
• HDL Coder distributes pipeline registers around the following blocks instead of

within them:

• Model
• Sum (Cascade implementation)
• Product (Cascade implementation)
• MinMax (Cascade implementation)
• Upsample
• Downsample
• Rate Transition
• Zero-Order Hold
• Reciprocal Sqrt (RecipSqrtNewton implementation)
• Trigonometric Function (CORDIC Approximation)
• Single Port RAM
• Dual Port RAM
• Simple Dual Port RAM

• If you enable distributed pipelining for a subsystem that contains blocks in the
following list, HDL Coder issues an error message and terminates code generation. To
enable code generation to proceed, place these blocks inside one or more subsystems
within the original subsystem and disable hierarchical distributed pipelining. HDL
Coder will distribute pipeline registers around nested Subsystem blocks.

• Tapped Delay
• M-PSK Demodulator Baseband
• M-PSK Modulator Baseband

 Distributed Pipelining and Hierarchical Distributed Pipelining

14-57

• QPSK Demodulator Baseband
• QPSK Modulator Baseband
• BPSK Demodulator Baseband
• BPSK Modulator Baseband
• PN Sequence Generator
• dspsigops/Repeat
• HDL Counter
• dspadpt3/LMS Filter
• dspsrcs4/Sine Wave
• commcnvcod2/Viterbi Decoder
• Triggered Subsystem
• Counter Limited
• Counter Free-Running
• Frame Conversion

What is Hierarchical Distributed Pipelining?

Hierarchical distributed pipelining extends the scope of distributed pipelining by moving
delays across hierarchical boundaries within a subsystem while preserving subsystem
hierarchy.

If a subsystem in the hierarchy does not have distributed pipelining enabled, HDL Coder
does not move delays across that subsystem.

For example, the following model has one level of subsystem hierarchy:

14 Optimization

14-58

The following diagram shows the model after applying hierarchical distributed
pipelining:

 Distributed Pipelining and Hierarchical Distributed Pipelining

14-59

The subsystem now contains pipeline registers:

14 Optimization

14-60

Benefits of Hierarchical Distributed Pipelining

Hierarchical distributed pipelining enables distributed pipelining to operate on a larger
part of your design, which increases the chance that distributed pipelining can further
reduce your design’s critical path.

Hierarchical distributed pipelining preserves the original subsystem hierarchy, which
enables you to trace the changes that occur during pipelining for nested Subsystem
blocks.

Specify Hierarchical Distributed Pipelining

You can specify hierarchical distributed pipelining for your model.

To specify distributed pipelining using the UI:

1 Right-click the DUT subsystem and select HDL Code > HDL Coder Properties.
2 In the HDL Code Generation > Global Settings pane, select the Optimization

tab.
3 Select Hierarchical distributed pipelining and click OK.

To enable hierarchical distributed pipelining, on the command line, enter:

hdlset_param('modelname', 'HierarchicalDistPipelining', 'on')

To disable hierarchical distributed pipelining, on the command line, enter:

 Distributed Pipelining and Hierarchical Distributed Pipelining

14-61

hdlset_param('modelname', 'HierarchicalDistPipelining', 'off')

Limitations of Hierarchical Distributed Pipelining

Hierarchical distributed pipelining must be disabled if your DUT subsystem contains a
model reference.

Distributed Pipelining Workflow

For an example that shows how to use distributed pipelining to reduce your critical path,
including delay insertion, see “Reduce Critical Path With Distributed Pipelining”.

Selected Bibliography

Leiserson, C.E, and James B. Saxe. “Retiming Synchronous Circuitry.” Algorithmica. Vol.
6, Number 1, 1991, pp. 5-35.

14 Optimization

14-62

Constrained Output Pipelining

In this section...

“What is Constrained Output Pipelining?” on page 14-62
“When To Use Constrained Output Pipelining” on page 14-62
“Requirements for Constrained Output Pipelining” on page 14-62
“Specify Constrained Output Pipelining” on page 14-63
“Limitations of Constrained Output Pipelining” on page 14-63

What is Constrained Output Pipelining?

With constrained output pipelining, you can specify a nonnegative number of registers at
the outputs of a block.

Constrained output pipelining does not add registers, but instead redistributes existing
delays within your design to try to meet the constraint. If HDL Coder cannot meet the
constraint with existing delays, it reports the difference between the number of desired
and actual output registers in the timing report.

Distributed pipelining does not move registers you specify with constrained output
pipelining.

When To Use Constrained Output Pipelining

Use constrained output pipelining when you want to place registers at specific locations
in your design. This can enable you to optimize the speed of your design.

For example, if you know where the critical path is in your design and want to reduce it,
you can use constrained output pipelining to place registers at specific locations along the
critical path.

Requirements for Constrained Output Pipelining

Your design must contain existing delays or registers. When there are fewer registers
than HDL Coder needs to satisfy your constraint, the coder reports the difference
between the number of desired and actual output registers.

 Constrained Output Pipelining

14-63

You can add registers to your design using input or output pipelining.

Specify Constrained Output Pipelining

To specify constrained output pipelining for a block using the UI:

1 Right-click the block and select HDL Code > HDL Block Properties.
2 For ConstrainedOutputPipeline, enter the number of registers you want at the

output ports.

To specify constrained output pipelining, on the command line, enter:

hdlset_param(path_to_block,'ConstrainedOutputPipeline', number_of_output_registers)

For example, to constrain 6 registers at the output ports of a subsystem, subsys, in your
model, mymodel, enter:

hdlset_param('mymodel/subsys','ConstrainedOutputPipeline', 6)

Limitations of Constrained Output Pipelining

HDL Coder does not constrain output pipeline register placement:

• Within a DUT subsystem, if the DUT contains a subsystem, model reference, or model
reference with black box implementation.

• At the outputs of any type of delay block or the top-level DUT subsystem.

14 Optimization

14-64

Pipeline Variables in the MATLAB Function Block

In this section...

“Using the HDL Block Properties Dialog Box” on page 14-64
“Using the Command Line” on page 14-64
“Limitations of Variable Pipelining” on page 14-64

You can insert a pipeline register at the output of a specific MATLAB variable.

Using the HDL Block Properties Dialog Box

To pipeline variables in a MATLAB Function block using the HDL Block Properties
dialog box:

1 Right-click the block and select HDL Code > HDL Block Properties.
2 For VariablesToPipeline, enter variable names for which you want HDL Coder to

insert an output register. Separate variable names with a space.

Using the Command Line

To pipeline variables in a MATLAB Function block, set the VariablesToPipeline
block parameter using hdlset_param. Specify the list of variables as a string, with
spaces separating the variables.

For example, if you have a MATLAB Function block, myFn, with three variables v1, v2,
v3, you can insert pipeline registers at the outputs of the three variables by entering:

hdlset_param('full/path/to/myFn','VariablesToPipeline', 'v1 v2 v3')

Limitations of Variable Pipelining

HDL Coder cannot insert a pipeline register for a MATLAB variable if it is:

• In a loop.
• A persistent variable that maps to a state element, like a state register or RAM.
• An output of a function. For example, in the following code, you cannot use variable

pipelining to add a pipeline register for y:

 Pipeline Variables in the MATLAB Function Block

14-65

function [y] = myfun(x)

y = x + 5;

end

• In a data feedback loop. For example, in the following code, the t and pvar variables
cannot be pipelined:

persistent pvar;

t = u + pvar;

pvar = t + v;

14 Optimization

14-66

Reduce Critical Path With Distributed Pipelining

This example shows how to reduce your critical path using distributed pipelining,
hierarchical distributed pipelining, output pipelining, and constrained output pipelining.

Before you begin, make sure you have a synthesis tool set up. If you do not have a
synthesis tool set up, you can follow this example, but you will not see maximum clock
period results in the Result subpane. This example uses Xilinx ISE, but you can use
another synthesis tool.

Open the simple_retiming model.

addpath(fullfile(docroot,'toolbox','hdlcoder','examples'));

simple_retiming

The top-level subsystem is the design under test (DUT). The DUT subsystem contains one
subsystem, subsys, and other blocks.

 Reduce Critical Path With Distributed Pipelining

14-67

The subsys block in DUT contains a copy of the three Product blocks in the lower half of
the diagram.

14 Optimization

14-68

Right-click the DUT subsystem and select HDL Code > HDL Workflow Advisor to open
the HDL Workflow Advisor.

In the Set Target > Set Target Device and Synthesis Tool pane, for Synthesis tool,
select Xilinx ISE.

The FPGA Synthesis and Analysis task appears.

On the left, expand the FPGA Synthesis and Analysis > Perform Synthesis and P/
R item.

Right-click Perform Logic Synthesis and select Run to Selected Task.

 Minimum period: 36.042ns (Maximum Frequency: 27.745MHz)

When HDL Coder finishes, you see the minimum clock period near the bottom of the
Results subpane.

Next, use distributed pipelining to improve your timing results.

In the model, right-click the DUT subsystem and select HDL Code > HDL Block
Properties.

In the HDL Block Properties dialog box, for DistributedPipelining, select on to enable
distributed pipelining, and click OK.

 Reduce Critical Path With Distributed Pipelining

14-69

In the DUT subsystem, right-click the subsys block, select HDL Code > HDL Block
Properties, and for DistributedPipelining, select on. Click OK.

In the HDL Workflow Advisor, in the HDL Code Generation > Set Code Generation
Options > Set Basic Options pane, enable Generate optimization report. Click
Apply.

In the HDL Workflow Advisor, right-click FPGA Synthesis and Analysis > Perform
Synthesis and P/R > Perform Logic Synthesis and select Run to Selected Task.

Minimum period: 22.025ns (Maximum Frequency: 45.403MHz)

The maximum clock frequency has increased.

In the Code Generation Report, click Distributed Pipelining to open the distributed
pipelining report.

Under Generated Model, click the gm_simple_retiming link to open the generated
model. You can see that HDL Coder redistributed the delay blocks.

14 Optimization

14-70

In the subsys block, there are no delay blocks because hierarchical distributed
pipelining is not enabled.

Next, use hierarchical distributed pipelining to further decrease the critical path.

In the HDL Workflow Advisor, in the HDL Code Generation > Set Code Generation
Options > Set Advanced Options > Optimization tab, enable Hierarchical
distributed pipelining and click Apply.

 Reduce Critical Path With Distributed Pipelining

14-71

Right-click FPGA Synthesis and Analysis > Perform Synthesis and P/R > Perform
Logic Synthesis and select Run to Selected Task to rerun synthesis.

Minimum period: 17.263ns (Maximum Frequency: 57.928MHz)

The maximum clock frequency has increased.

In the Code Generation Report, click Distributed Pipelining to open the distributed
pipelining report. Click the gm_simple_retiming link to open the generated model.

HDL Coder has distributed delays in the DUT and within the subsystem block.

14 Optimization

14-72

Now, use constrained output pipelining to further reduce the critical path.

In the simple_retiming model, open the subsys block within the DUT subsystem.

Right-click the Product5 block, and select HDL Code > HDL Block Properties.

For OutputPipeline, enter 1, and for ConstrainedOutputPipeline, enter 1. Click
OK.

This adds a pipeline register and constrains it at the output of Product5.

In the HDL Workflow Advisor, right-click Set Target > Set Target Device and
Synthesis Tool and select Reset This Task.

Right-click FPGA Synthesis and Analysis > Perform Synthesis and P/R > Perform
Logic Synthesis and select Run to Selected Task to rerun synthesis.

Minimum period: 10.266ns (Maximum Frequency: 97.410MHz)

The maximum clock frequency is now higher.

 Clock-Rate Pipelining

14-73

Clock-Rate Pipelining

In this section...

“Need For Clock-Rate Pipelining” on page 14-73
“How Clock-Rate Pipelining Works” on page 14-74
“Best Practices For Clock-Rate Pipelining” on page 14-74
“When To Disable Clock-Rate Pipelining” on page 14-74
“How To Specify Clock-Rate Pipelining” on page 14-74
“Limitations For Clock-Rate Pipelining” on page 14-75

For speed optimizations that insert pipeline registers, clock-rate pipelining identifies
multi-cycle paths in your design and inserts pipeline registers at the clock rate instead of
the data rate. Clock-rate pipelining can improve clock frequency at the cost of additional
pipeline registers.

When the optimization is in a slow-rate region or multi-cycle path of the design, clock
rate pipelining enables the software to perform optimizations without adding extra
latency, or by adding minimal latency. It also enables optimizations such as pipelining
and floating-point library mapping inside feedback loops.

Need For Clock-Rate Pipelining

HDL Coder restructures your design architecture to implement your Simulink design in
hardware. For some block implementations and optimizations, the coder must introduce
delay. For example, the following options introduce delay:

• Multi-cycle block implementations
• Input and output pipelining
• Floating-point library mapping
• Delay balancing

However, the HDL implementation cannot introduce latency in a feedback loop, because
that would create a functional mismatch between the original design and the HDL
implementation. Therefore, without a way to insert delays that do not add latency, many
optimizations and block implementations are unavailable within feedback loops.

14 Optimization

14-74

How Clock-Rate Pipelining Works

In blocks where there is a difference between the DUT sample time and the block sample
time, or Oversampling is greater than 1, the coder can insert delays at the faster rate
without adding latency, or by adding minimal latency, to the design.

The coder determines the maximum number of fast-rate delays it can insert based on the
DUT-to-block sample time ratio and the oversampling factor:

maximum number of clock-rate delays = block_rate / DUT_base_rate * Oversampling

For the following options, HDL Coder can introduce delays at the faster clock rate:

• Input and output pipelining
• Distributed pipelining
• Floating-point library mapping
• Multi-cycle HDL block implementations

Clock-rate pipelining does not affect the clock rate for delay blocks that are part of your
original Simulink model.

Best Practices For Clock-Rate Pipelining

To increase the opportunities for clock-rate pipelining, enable hierarchy flattening.

When To Disable Clock-Rate Pipelining

If you want to reduce area at the cost of speed, disable clock-rate pipelining.

How To Specify Clock-Rate Pipelining

Clock-rate pipelining is enabled by default. You can disable clock-rate pipelining in one of
the following ways:

• In the HDL Workflow Advisor, in the HDL Code Generation > Set Code
Generation Options > Set Advanced Options > Optimization tab, select Clock-
rate pipelining.

• In the Configuration Parameters dialog box, in HDL Code Generation > Global
Settings > Optimization tab, select Clock-rate pipelining

 Clock-Rate Pipelining

14-75

• At the command line, use makehdl or hdlset_param to set the
ClockRatePipelining property to off.

Limitations For Clock-Rate Pipelining

Clock-rate pipelining takes priority over resource sharing. For parts of the design where
you specify resource sharing, HDL Coder inserts delays at the slower rate.

The following blocks inhibit clock-rate pipelining, and therefore delimit clock-rate
pipelining regions:

• Coulomb and Viscous Friction
• Counter Free-Running
• Counter Limited
• Deserializer1D
• Discrete PID Controller
• Dual Port RAM
• Dual Rate Dual Port RAM
• FFT HDL Optimized
• HDL Cosimulation
• HDL FIFO
• HDL Counter
• Hit Crossing
• HDL Minimum Resource FFT
• HDL Streaming FFT
• MATLAB Function
• MATLAB System
• Rate Transition
• Serializer1D
• Simple Dual Port RAM
• Single Port RAM
• Subsystem, if FlattenHierarchy is not enabled.
• Tapped Delay

14 Optimization

14-76

• Unit Delay Enabled
• Unit Delay Enabled Resettable
• Unit Delay Resettable

Similarly, the coder does not support clock-rate pipelining for:

• Black box subsystem or black box model reference blocks.
• Subsystems that contain blocks not supported for clock-rate pipelining.
• Altera DSP Builder subsystems
• Xilinx System Generator subsystems
• Communications System Toolbox blocks
• DSP System Toolbox blocks, except for Delay
• Stateflow blocks

See Also
ClockRatePipelining | Oversampling

15

Code Generation Reports, HDL
Compatibility Checker, Block Support
Library, and Code Annotation

• “Create and Use Code Generation Reports” on page 15-2
• “Resource Utilization Report” on page 15-4
• “Optimization Report” on page 15-6
• “Traceability Report” on page 15-9
• “Web View of Model in Code Generation Report” on page 15-26
• “Generate Code with Annotations or Comments” on page 15-29
• “Check Your Model for HDL Compatibility” on page 15-33
• “Create a Supported Blocks Library” on page 15-36
• “Trace Code Using the Mapping File” on page 15-38
• “Add or Remove the HDL Configuration Component” on page 15-41

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-2

Create and Use Code Generation Reports

Information Included in Code Generation Reports

The HDL Coder software creates and displays an HDL Code Generation Report when you
select one or more of the following options:

GUI option makehdl Property

Generate traceability report Traceability

Generate resource utilization report ResourceReport

Generate optimization report OptimizationReport

Generate model Web view GenerateWebview

These options appear in the Code generation report panel of the HDL Code
Generation pane of the Configuration Parameters dialog box:

The HDL Code Generation Report is an HTML report that includes a Summary and one
or more of the following optional sections:

• Traceability Report
• Resource Utilization Report
• “Optimization Report” on page 15-6
• “Web View of Model in Code Generation Report” on page 15-26

Create and Use Code Generation Reports

15-3

HDL Code Generation Report Summary

All reports include a Summary section. The Summary lists information about the model,
the DUT, the date of code generation, and top-level coder settings. The Summary also
lists model properties that have nondefault values.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-4

Resource Utilization Report

When you select Generate resource utilization report, HDL Coder adds a Resource
Utilization Report section. The Resource Utilization Report summarizes multipliers,
adders/subtractors, and registers consumed by the device under test (DUT). It also
includes a detailed report on resources used by each subsystem. The detailed report
includes (wherever possible) links back to corresponding blocks in your model.

The Resource Utilization Report is useful for analysis of the effects of optimizations, such
as resource sharing and streaming. A typical Resource Utilization Report looks like this:

 Resource Utilization Report

15-5

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-6

Optimization Report

When you select Generate optimization report, HDL Coder adds an Optimization
Report section, with two subsections:

• Distributed Pipelining: this subsection shows details of subsystem-level distributed
pipelining if any subsystems have the DistributedPipelining option enabled.
Details include comparative listings of registers and flip-flops before and after
applying the distributed pipelining transform.

• Streaming and Sharing: this subsection shows both summary and detailed
information about the subsystems for which sharing or streaming is requested.

A typical Distributed Pipelining Report looks something like this:

 Optimization Report

15-7

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-8

Hierarchical Distributed Pipelining in the Optimization Report

If HierarchicalDistPipelining is on, the Optimization Report uses colored
sections to distinguish between different regions where HDL Coder applies hierarchical
distributed pipelining:

Related Examples
• “Find Feedback Loops”

 Traceability Report

15-9

Traceability Report

In this section...

“Traceability Report Overview” on page 15-9
“Generating a Traceability Report from Configuration Parameters” on page 15-13
“Generating a Traceability Report from the Command Line” on page 15-16
“Keeping the Report Current” on page 15-18
“Tracing from Code to Model” on page 15-18
“Tracing from Model to Code” on page 15-20
“Mapping Model Elements to Code Using the Traceability Report” on page 15-23
“Traceability Report Limitations” on page 15-24

Traceability Report Overview

Even a relatively small model can generate hundreds of lines of HDL code. The HDL
Coder software provides the traceability report section to help you navigate more easily
between the generated code and your source model. When you enable traceability, HDL
Coder creates and displays an HTML code generation report. You can generate reports
from the Configuration Parameters dialog box or the command line. A typical traceability
report looks something like this:

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-10

The traceability report has several subsections:

• The Traceability Report lists Traceable Simulink Blocks / Stateflow Objects /
MATLAB Functions, providing a complete mapping between model elements and

 Traceability Report

15-11

code. The Eliminated / Virtual Blocks section of the report accounts for blocks that
are untraceable.

• The Generated Source Files table contains hyperlinks that let you view generated
HDL code in a MATLAB Web Browser window. This view of the code includes
hyperlinks that let you view the blocks or subsystems from which the code was
generated. You can click the names of source code files generated from your model
to view their contents in a MATLAB Web Browser window. The report supports two
types of linkage between the model and generated code:

• Code-to-model hyperlinks within the displayed source code let you view the blocks
or subsystems from which the code was generated. Click the hyperlinks to view the
relevant blocks or subsystems in a Simulink model window.

• Model-to-code linkage lets you view the generated code for any block in the model.
To highlight a block's generated code in the HTML report, right-click the block and
select HDL Code > Navigate to Code.

Note: If your model includes blocks that have requirements comments, you can also
render the comments as hyperlinked comments within the HTML code generation report.
See “Requirements Comments and Hyperlinks” on page 15-29 for more information.

In the following sections, the mcombo example model illustrates stages in the workflow
for generating code generation reports from the Configuration Parameters dialog box and
from the command line.

To open the model, enter:

mcombo

The root-level mcombo model appears as follows:

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-12

HDL Coder supports report generation for models, subsystems, blocks, Stateflow charts,
and MATLAB Function blocks. This example uses the combo subsystem, shown in the
following figure. The combo subsystem includes a Stateflow chart, a MATLAB Function
block, and a subsystem.

 Traceability Report

15-13

Generating a Traceability Report from Configuration Parameters

To generate a HDL Coder code generation report from the Configuration Parameters
dialog box:

1 Verify that the model is open.
2 Open the Configuration Parameters dialog box and navigate to the HDL Code

Generation pane.
3 To enable report generation, select Generate traceability report.

If your model includes blocks that have requirements comments, you can also select
Include requirements in block comments in the HDL Code Generation >
Global Settings > Coding style pane to render the comments as hyperlinked
comments in the HTML code generation report. See “Requirements Comments and
Hyperlinks” on page 15-29 for more information.

4 Verify that Generate HDL for specifies the correct DUT for HDL code generation.
You can generate reports for the root-level model or for subsystems, blocks, Stateflow
charts, or MATLAB Function blocks.

5 Click Apply.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-14

6 Click Generate to initiate code and report generation.

When you select Generate traceability report, HDL Coder generates HTML
report files as part of the code generation process. Report file generation is the final
phase of that process. As code generation proceeds, the coder displays progress
messages. The process completes with messages similar to the following:
Generating HTML files for traceability in slprj\hdl\mcombo\html directory ...

HDL Code Generation Complete.

When code generation is complete, the HTML report appears in a new window:

 Traceability Report

15-15

7 To view the different report sections or view the generated code files, click the
hyperlinks in the Contents pane of the report window.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-16

Tip HDL Coder writes the code generation report files to a folder in the hdlsrc
\html\ folder of the build folder. The top-level HTML report file is named
system_codegen_rpt.html, where system is the name of the model, subsystem,
or other component selected for code generation. However, because the coder
automatically opens this file after report generation, you do not need to access the
HTML files directly. Instead, navigate the report using the links in the top-level
window.

For more information on using the report you generate for tracing, see:

• “Tracing from Code to Model” on page 15-18
• “Tracing from Model to Code” on page 15-20
• “Mapping Model Elements to Code Using the Traceability Report” on page 15-23

Generating a Traceability Report from the Command Line

To generate a HDL Coder code generation report from the command line:

1 Open your model by entering:

open_system('model_name');

2 Specify the desired device under test (DUT) for code generation by entering:

gcb = 'path_to_DUT';

You can generate reports for the root-level model or for subsystems, blocks, Stateflow
charts, or MATLAB Function blocks. If you do not specify a subsystem, block,
Stateflow chart, or MATLAB Function block, HDL Coder generates a report for the
top-level model.

3 Enable the makehdl property Traceability by entering:

makehdl(gcb,'Traceability','on');

When you enable traceability, HDL Coder generates HTML report files as part of
the code generation process. Report file generation is the final phase of that process.
As code generation proceeds, the coder displays progress messages. The process
completes with messages similar to the following:
Generating HTML files for traceability in slprj\hdl\mcombo\html directory ...

HDL Code Generation Complete.

 Traceability Report

15-17

When code generation is complete, the HTML report appears in a new window:

4 To view the different report sections or view the generated code files, click the
hyperlinks in the Contents pane of the report window.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-18

Tip HDL Coder writes the code generation report files to a folder in the hdlsrc
\html\ folder of the build folder. The top-level HTML report file is named
system_codegen_rpt.html, where system is the name of the model, subsystem,
or other component selected for code generation. However, because the coder
automatically opens this file after report generation, you do not need to access the
HTML files directly. Instead, navigate the report using the links in the top-level
window.

For more information on using the report you generate for tracing, see:

• “Tracing from Code to Model” on page 15-18
• “Tracing from Model to Code” on page 15-20
• “Mapping Model Elements to Code Using the Traceability Report” on page 15-23

Keeping the Report Current

If you generate a code generation report for a model, and subsequently make changes to
the model, the report might become invalid.

To keep your code generation report current, you should regenerate HDL code and the
report after modifying the source model.

If you close and then reopen a model without making changes, the report remains valid.

Tracing from Code to Model

To trace from generated code to your model:

1 Generate code and open an HTML report for the desired DUT (see “Generating
a Traceability Report from Configuration Parameters” on page 15-13 or
“Generating a Traceability Report from the Command Line” on page 15-16).

2 In the left pane of the HTML report window, click the desired file name in the
Generated Source Files table to view a source code file.

The following figure shows a view of the source file Gain_Subsystem.vhd.

 Traceability Report

15-19

3 In the HTML report window, click a link to highlight the corresponding source block.

For example, in the HTML report shown in the previous figure, you could click the
hyperlink for the Gain block (highlighted) to view that block in the model. Clicking
the hyperlink locates and displays the corresponding block in the Simulink model
window.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-20

Tracing from Model to Code

Model-to-code traceability lets you select a component at any level of the model, and view
the code references to that component in the HTML code generation report. You can
select the following objects for tracing:

• Subsystem
• Simulink block
• MATLAB Function block
• Stateflow chart, or the following elements of a Stateflow chart:

• State
• Transition
• Truth table
• MATLAB function inside a chart

To trace a model component:

1 Generate code and open an HTML report for the desired DUT (see “Generating
a Traceability Report from Configuration Parameters” on page 15-13 or
“Generating a Traceability Report from the Command Line” on page 15-16).

 Traceability Report

15-21

Tip If you have not generated code for the model, HDL Coder disables the HDL
Code > Navigate to Code menu item.

2 In the model window, right-click the component and select HDL Code > Navigate
to Code.

3 Selecting Navigate to Code activates the HTML code generation report.

The following figure shows the result of tracing the Stateflow chart within the combo
subsystem.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-22

In the right pane of the report, the highlighted tag <S3>/Chart indicates the
beginning of the code generated code for the chart.

In the left pane of the report, the total number of highlighted lines of code (in this
case, 1) appears next to the source file name combo.vhd.

 Traceability Report

15-23

The left pane of the report also contains Previous and Next buttons. These buttons
help you navigate through multiple instances of code generated for a selected
component. In this example, there is only one instance, so the buttons are disabled.

Mapping Model Elements to Code Using the Traceability Report

The Traceability Report section of the report provides a complete mapping between
model elements and code. The Traceability Report summarizes:

• Eliminated / virtual blocks: accounts for blocks that are untraceable because they
are not included in generated code

• Traceable model elements, including:

• Traceable Simulink blocks
• Traceable Stateflow objects
• Traceable MATLAB functions

The following figure shows the beginning of a traceability report generated for the combo
subsystem of the mcombo model.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-24

Traceability Report Limitations

The following limitations apply to HDL Coder HTML code generation reports:

 Traceability Report

15-25

• If a block name in your model contains a single quote ('), code-to-model and model-to-
code traceability are disabled for that block.

• If an asterisk (*) in a block name in your model causes a name-mangling ambiguity
relative to other names in the model, code-to-model highlighting and model-to-code
highlighting are disabled for that block. This is most likely to occur if an asterisk
precedes or follows a slash (/) in a block name or appears at the end of a block name.

• If a block name in your model contains the character ÿ (char(255)), code-to-model
highlighting and model-to-code highlighting are disabled for that block.

• Some types of subsystems are not traceable from model to code at the subsystem block
level:

• Virtual subsystems
• Masked subsystems
• Nonvirtual subsystems for which code has been optimized away

If you cannot trace a subsystem at the subsystem level, you might be able to trace
individual blocks within the subsystem.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-26

Web View of Model in Code Generation Report

In this section...

“About Model Web View” on page 15-26
“Generate HTML Code Generation Report with Model Web View” on page 15-26
“Model Web View Limitations” on page 15-28

About Model Web View

To review and analyze the generated code, it is helpful to navigate between the code
and model. You can include a Web view of the model within the HTML code generation
report. You can then share your model and generated code outside of the MATLAB
environment. When you generate the report, the Web view includes the block diagram
attributes displayed in the Simulink Editor, such as, block sorted execution order, signal
properties, and port data types.

A Simulink Report Generator license is required to include a “Web view” of the model in
the code generation report.

Browser Requirements for Web View

Web view requires a Web browser that supports Scalable Vector Graphics (SVG). Web
view uses SVG to render and navigate models.

You can use the following Web browsers:

• Mozilla Firefox Version 1.5 or later, which has native support for SVG. To download
the Firefox browser, go to www.mozilla.com/.

• The Microsoft® Internet Explorer® Web browser with the Adobe® SVG Viewer plug-in.
To download the Adobe SVG Viewer plug-in, go to www.adobe.com/svg/.

• Apple Safari Web browser

Generate HTML Code Generation Report with Model Web View

This example shows how to create an HTML code generation report which includes a
Web view of the model diagram.

1 Open the mcombo model.

http://www.mozilla.com/
http://www.adobe.com/svg/

 Web View of Model in Code Generation Report

15-27

2 Open the Configuration Parameters dialog box or Model Explorer and navigate
to the HDL Code Generation pane.

3 Under Code generation report, select Generate model Web view.
4 Click the Generate button.

After building the model and generating code, the code generation report opens in a
MATLAB Web browser.

5 In the left navigation pane, select a source code file. The corresponding source code is
displayed in the right pane and includes hyperlinks.

6 Click a link in the code. The model Web view displays and highlights the
corresponding block in the model.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-28

7 To highlight the generated code for a block in your model, click the block. The
corresponding code is highlighted in the source code pane.

8 To go back to the code generation report for the top model, at the top of the left
navigation pane, click the Back button until the top model’s report is displayed.

For more information about exploring a model in a Web view, see “Navigate the Web
View” in the Simulink Report Generator documentation.

Model Web View Limitations

The HTML code generation report includes the following limitations when using the
model Web view:

• Code is not generated for virtual blocks. In the model Web view of the code generation
report, when tracing between the model and the code, when you click a virtual block,
it is highlighted yellow.

• In the model Web view, you cannot open a referenced model diagram by double-
clicking the referenced model block in the top model. Instead, open the code
generation report for the referenced model by clicking a link under Referenced
Models in the left navigation pane.

• Stateflow truth tables, events, and links to library charts are not supported in the
model Web view.

• Searching in the code generation report does not find or highlight text in the model
Web view.

• If you navigate from the actual model diagram (not the model Web view in the
report), to the source code in the HTML code generation report, the model Web view
is disabled and not visible. To enable the model Web view, open the report again, see
“Open Code Generation Report”.

• For a subsystem build, the traceability hyperlinks of the root level inport and outport
blocks are disabled.

• “Traceability Limitations” that apply to tracing between the code and the actual
model diagram.

 Generate Code with Annotations or Comments

15-29

Generate Code with Annotations or Comments

In this section...

“Simulink Annotations” on page 15-29
“Text Comments” on page 15-29
“Requirements Comments and Hyperlinks” on page 15-29

The following sections describe how to use the HDL Coder software to add text
annotations to generated code, in the form of model annotations, text comments or
requirements comments.

Simulink Annotations

You can enter text directly on the block diagram as Simulink annotations. HDL Coder
renders text from Simulink annotations as plain text comments in generated code. The
comments are generated at the same level in the model hierarchy as the subsystem(s)
that contain the annotations, as if they were Simulink blocks.

See “Annotations” in the Simulink documentation for general information on
annotations.

Text Comments

You can enter text comments at any level of the model by placing a DocBlock at the
desired level and entering text comments. HDL Coder renders text from the DocBlock in
generated code as plain text comments. The comments are generated at the same level in
the model hierarchy as the subsystem that contains the DocBlock.

Set the Document type parameter of the DocBlock to Text. HDL Coder does not
support the HTML or RTF options.

See “DocBlock” in the Simulink documentation for general information on the DocBlock.

Requirements Comments and Hyperlinks

You can assign requirement comments to blocks.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-30

If your model includes requirements comments, you can choose to render the comments
in one of the following formats:

• Text comments in generated code: To include requirements as text comments in code,
use the defaults for Include requirements in block comments (on) and Generate
traceability report (off) in the Configuration Parameters dialog box.

If you generate code from the command line, set the Traceability and
RequirementComments properties:

makehdl(gcb,'Traceability','off','RequirementComments','on');

The following figure highlights text requirements comments generated for a Gain
block from the mcombo model.

• Hyperlinked comments: To include requirements comments as hyperlinked comments
in an HTML code generation report, select both Generate traceability report and
Include requirements in block comments in the Configuration Parameters dialog
box.

If you generate code from the command line, set the Traceability and
RequirementComments properties:

makehdl(gcb,'Traceability','on','RequirementComments','on');

 Generate Code with Annotations or Comments

15-31

The comments include links back to a requirements document associated with the
block and to the block within the original model. For example, the following figure
shows two requirements links assigned to a Gain block. The links point to sections of
a text requirements file.

The following figure shows hyperlinked requirements comments generated for the Gain
block.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-32

 Check Your Model for HDL Compatibility

15-33

Check Your Model for HDL Compatibility

The HDL compatibility checker lets you check whether a subsystem or model is
compatible with HDL code generation. You can run the compatibility checker from the
command line or from the GUI.

To run the compatibility checker from the command line, use the checkhdl function.
The syntax of the function is

checkhdl('system')

where system is the device under test (DUT), typically a subsystem within the current
model.

To run the compatibility checker from the GUI:

1 Open the Configuration Parameters dialog box or the Model Explorer. Select the
HDL Code Generation pane.

2 Select the subsystem you want to check from the Generate HDL for list.
3 Click the Run Compatibility Checker button.

The HDL compatibility checker examines the specified system for compatibility
problems, such as use of unsupported blocks, illegal data type usage, etc. The HDL
compatibility checker generates an HDL Code Generation Check Report, which is stored
in the target folder. The report file naming convention is system_report.html, where
system is the name of the subsystem or model passed to the HDL compatibility checker.

The HDL Code Generation Check Report is displayed in a MATLAB Web Browser
window. Each entry in the HDL Code Generation Check Report is hyperlinked to the
block or subsystem that caused the problem. When you click the hyperlink, the block
of interest highlights and displays (provided that the model referenced by the report is
open).

The following figure shows an HDL Code Generation Check Report that was generated
for a subsystem with a Product block that was configured with a mixture of double and
integer port data types. This configuration is legal in a model, but incompatible with
HDL code generation.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-34

When you click the hyperlink in the left column, the subsystem containing the offending
block opens. The block of interest is highlighted, as shown in the following figure.

The following figure shows an HDL Code Generation Check Report that was generated
for a subsystem that passed its compatibility checks. In this case, the report contains
only a hyperlink to the subsystem that was checked.

 Check Your Model for HDL Compatibility

15-35

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-36

Create a Supported Blocks Library

The hdllib function creates a library of blocks that are currently supported for HDL
code generation. The block library, hdlsupported, affords quick access to supported
blocks. By constructing models using blocks from this library, your models will be
compatible with HDL code generation.

The set of supported blocks will change in future releases of HDL Coder. To keep the
hdlsupported library current, you should rebuild the library each time you install a
new release. To create the library:

1 Type the following at the MATLAB prompt:

hdllib

hdllib starts generation of the hdlsupported library. Many libraries load during
the creation of the hdlsupported library. When hdllib completes generation of
the library, it does not unload these libraries.

2 After the library is generated, you must save it to a folder of your choice. You should
retain the file name hdlsupported, because this document refers to the supported
blocks library by that name.

The following figure shows the top-level view of the hdlsupported library.

 Create a Supported Blocks Library

15-37

Parameter settings for blocks in the hdlsupported library might differ from
corresponding blocks in other libraries.

For detailed information about supported blocks and HDL block implementations, see
“Set and View HDL Block Parameters”.

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-38

Trace Code Using the Mapping File

Note: This section refers to generated VHDL entities or Verilog modules generically as
“entities.”

A mapping file is a text report file generated by makehdl. Mapping files are generated as
an aid in tracing generated HDL entities back to the corresponding systems in the model.

A mapping file shows the relationship between systems in the model and the VHDL
entities or Verilog modules that were generated from them. A mapping file entry has the
form

path --> HDL_name

where path is the full path to a system in the model and HDL_name is the name of the
VHDL entity or Verilog module that was generated from that system. The mapping file
contains one entry per line.

In simple cases, the mapping file may contain only one entry. For example, the
symmetric_fir subsystem of the sfir_fixed model generates the following mapping
file:

sfir_fixed/symmetric_fir --> symmetric_fir

Mapping files are more useful when HDL code is generated from complex models where
multiple subsystems generate many entities, and in cases where conflicts between
identically named subsystems are resolved by HDL Coder.

If a subsystem name is unique within the model, HDL Coder simply uses the subsystem
name as the generated entity name. Where identically named subsystems are
encountered, the coder attempts to resolve the conflict by appending a postfix string
(by default, '_entity') to the conflicting subsystem. If subsequently generated
entity names conflict in turn with this name, incremental numerals (1,2,3,...n) are
appended.

As an example, consider the model shown in the following figure. The top-level model
contains subsystems named A nested to three levels.

 Trace Code Using the Mapping File

15-39

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-40

When code is generated for the top-level subsystem A, makehdl works its way up from
the deepest level of the model hierarchy, generating unique entity names for each
subsystem.

makehdl('mapping_file_triple_nested_subsys/A')

Working on mapping_file_triple_nested_subsys/A/A/A as A_entity1.vhd

Working on mapping_file_triple_nested_subsys/A/A as A_entity2.vhd

Working on mapping_file_triple_nested_subsys/A as A.vhd

HDL Code Generation Complete.

The following example lists the contents of the resultant mapping file.

mapping_file_triple_nested_subsys/A/A/A --> A_entity1

mapping_file_triple_nested_subsys/A/A --> A_entity2

mapping_file_triple_nested_subsys/A --> A

Given this information, you can trace a generated entity back to its corresponding
subsystem by using the open_system command, for example:

open_system('mapping_file_triple_nested_subsys/A/A')

Each generated entity file also contains the path for its corresponding subsystem in the
header comments at the top of the file, as in the following code excerpt.

-- Module: A_entity2

-- Simulink Path: mapping_file_triple_nested_subsys/A

-- Hierarchy Level: 0

 Add or Remove the HDL Configuration Component

15-41

Add or Remove the HDL Configuration Component

In this section...

“What Is the HDL Configuration Component?” on page 15-41
“Adding the HDL Coder Configuration Component To a Model” on page 15-41
“Removing the HDL Coder Configuration Component From a Model” on page 15-41

What Is the HDL Configuration Component?

The HDL configuration component is an internal data structure that HDL Coder creates
and attaches to a model. This component lets you view the HDL Code Generation
pane in the Configurations Parameters dialog box and set HDL code generation options.
Normally, you do not need to interact with the HDL configuration component. However,
there are situations where you might want to add or remove the HDL configuration
component:

• A model that was created on a system that did not have HDL Coder installed does not
have the HDL configuration component attached. In this case, you might want to add
the HDL configuration component to the model.

• If a previous user removed the HDL configuration component, you might want to add
the component back to the model.

• If a model will be running on some systems that have HDL Coder installed, and on
other systems that do not, you might want to keep the model consistent between both
environments. If so, you might want to remove the HDL configuration component
from the model.

Adding the HDL Coder Configuration Component To a Model

To add the HDL Coder configuration component to a model:

1 In the Simulink Editor, select Code > HDL Code.
2 Select Add HDL Coder Configuration to Model.
3 Save the model.

Removing the HDL Coder Configuration Component From a Model

To remove the HDL Coder configuration component from a model:

15 Code Generation Reports, HDL Compatibility Checker, Block Support Library, and Code Annotation

15-42

1 In the Simulink Editor, select Code > HDL Code, and select Remove HDL Coder
Configuration from Model.

HDL Coder displays a confirmation message.
2 Click Yes to confirm that you want to remove the HDL Coder configuration

component.
3 Save the model.

16

HDL Coding Standards

• “HDL Coding Standard Report” on page 16-2
• “HDL Coding Standards” on page 16-4
• “Generate an HDL Coding Standard Report from Simulink” on page 16-5
• “HDL Coding Standard Rules” on page 16-9
• “Generate an HDL Lint Tool Script” on page 16-15

16 HDL Coding Standards

16-2

HDL Coding Standard Report

The HDL coding standard report shows how your generated HDL code conforms to an
industry coding standard you select when generating code.

The report can contain errors, warnings, and messages. Errors and warnings in the
report link to elements in your original design so you can fix problems, then regenerate
code. Messages show where HDL Coder automatically corrected the code to conform to
the coding standard.

The report also lists the rules in the coding standard with which the generated code
complies. You can inspect the report to see which coding standard rules the coder checks.

To learn more about HDL coding standards, see “HDL Coding Standards”.

Rule Summary

The rule summary section shows the total numbers of errors, warnings, and messages,
and lists the corresponding rules. Each rule shown in the summary links to the rule in
the detailed rule hierarchy section.

Rule Hierarchy

The rule hierarchy section lists every rule HDL Coder checks, within three categories:

 HDL Coding Standard Report

16-3

• Basic coding practices, including rules for names, clocks, and reset.
• RTL description techniques, including rules for combinatorial and synchronous logic,

operators, and finite state machines.
• RTL design methodology guidelines, including rules for ports, function libraries, files,

and comments.

If your HDL code does not conform to a specific rule, the rule shows either the automated
correction, or a link to the original design element causing the error or warning. When
you click a link, the design opens with the design element highlighted. You can fix the
problem in your design, then regenerate code.

Rule and Report Customization

You can configure the report so that it does not display passing rules by using the
ShowPassingRules property of the HDL coding standard customization object.
You can also disable or customize coding standard rules. See HDL Coding Standard
Customization Properties.

How To Fix Warnings and Errors

To learn more about warnings and errors you can fix by modifying your design, see “HDL
Coding Standard Rules”.

16 HDL Coding Standards

16-4

HDL Coding Standards

HDL coding standards give language-specific code usage rules to help you generate more
efficient, portable, and synthesizable HDL code, such as coding guidelines for:

• Names
• Ports, reset and clocks
• Combinatorial and synchronous logic
• Finite state machines
• Conditional statements and operators

HDL Coder can generate HDL code that follows industry standard rules, and can
generate a report that shows how well your generated HDL code conforms to industry
coding standards. You can customize some of the coding standard rules. The coder can
also generate third-party lint tool scripts to use to check your generated HDL code.

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB”
• “Generate an HDL Coding Standard Report from Simulink”

More About
• “HDL Coding Standard Report”

 Generate an HDL Coding Standard Report from Simulink

16-5

Generate an HDL Coding Standard Report from Simulink

In this section...

“Using the HDL Workflow Advisor” on page 16-5
“Using the Command Line” on page 16-7

You can generate an HDL coding standard report that shows how well your generated
code follows industry standards. You can optionally customize the coding standard report
and the coding standard rules.

Using the HDL Workflow Advisor

To generate an HDL coding standard report using the HDL Workflow Advisor:

1 In the HDL Code Generation task, in Set Code Generation Options > Set
Advanced Options, select the Coding standards tab.

2 For HDL coding standard, select Industry and click Apply.

16 HDL Coding Standards

16-6

3 Optionally, using the other options in the Coding standards tab, customize the
coding standard rules and click Apply.

 Generate an HDL Coding Standard Report from Simulink

16-7

After you generate code, the message window shows a link to the HTML compliance
report. To open the report, click the report link.

Using the Command Line

To generate an HDL coding standard report using the command line interface, set the
HDLCodingStandard property to Industry using makehdl or hdlset_param.

For example, to generate HDL code and an HDL coding standard report for a subsystem,
sfir_fixed/symmetric_sfir, enter the following command:

makehdl('sfir_fixed/symmetric_fir','HDLCodingStandard','Industry')

Generating HDL for 'sfir_fixed/symmetric_fir'.

Starting HDL check.

HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings, and 0 messages.

Begin VHDL Code Generation for 'sfir_fixed'.

Working on sfir_fixed/symmetric_fir as hdlsrc\sfir_fixed\symmetric_fir.vhd

Industry Compliance report with 4 errors, 18 warnings, 5 messages.

Generating Industry Compliance Report symmetric_fir_Industry_report.html

Generating SpyGlass script file sfir_fixed_symmetric_fir_spyglass.prj

HDL code generation complete.

To open the report, click the report link.

You can customize the coding standard report and coding standard rule checks
by specifying an HDL coding standard customization object. For example, for a
subsystem, sfir_fixed/symmetric_sfir, you can create an HDL coding standard
customization object, cso, set the maximum if-else statement chain length to 5 by using
the IfElseChain property, and generate code:

cso = hdlcoder.CodingStandard('Industry');

cso.IfElseChain.length = 5;

makehdl('sfir_fixed/symmetric_fir','HDLCodingStandard','Industry','HDLCodingStandardCustomizations',cso)

See Also

Properties
HDL Coding Standard Customization Properties

More About
• “HDL Coding Standard Report”

16 HDL Coding Standards

16-8

• “HDL Coding Standard Rules”

 HDL Coding Standard Rules

16-9

HDL Coding Standard Rules

When you generate an HDL coding standard report, the following industry standard
rules may appear. You can fix errors or warnings related to these rules by updating your
design, or by customizing the associated HDL coding standard rule.

Rule / Severity Message Problem How to fix

1.A.A.2
Message

Identifiers and

names should follow

recommended naming

convention.

A name in the design
does not start with a
letter, or contains a
character other than
a number, letter, or
underscore.

Update the names in
your design so that they
start with a letter of the
alphabet (a-z, A-Z), and
contain only alphanumeric
characters (a-z, A-Z, 0-9)
and underscores (_).

1.A.A.3
Message

Keywords in Verilog-

HDL(IEEE1364),

SystemVerilog(v3.1a),

and keywords in

VHDL(IEEE1076.X) must

not be used.

There are Verilog,
SystemVerilog, or VHDL
keywords within the
names in your design.

Update the names in
your design so that they
do not contain Verilog,
SystemVerilog, or VHDL
keywords.

You can disable this
rule by using the
HDLKeywords property of
the HDL coding standard
customization object.

1.A.A.5
Error

Do not use case

variants of names

in the same scope.

(Verilog)

Do not use names

that differ in case

only, within the same

scope. (VHDL)

Two or more names in
your design, within the
same scope, are identical
except for case.

For example, the names
foo and Foo cannot be in
the same scope.

Update the names in your
design so that no two
names within the same
scope differ only in case.

You can disable this
rule by using the
DetectDuplicateNamesCheck

property of the HDL
coding standard
customization object.

1.A.A.9
Warning

Top-level module/

entity and port

A top-level module,
entity, or port name

Update the indicated
name in your design so

16 HDL Coding Standards

16-10

Rule / Severity Message Problem How to fix

names should be less

than or equal to 16

characters in length

and not be mixed-

case.

in the generated code
is longer than 16
characters, or uses letters
with mixed case.

that it is less than or
equal to 16 characters
long, and all letters are
lowercase, or all letters
are uppercase.

1.A.B.1
Error

Module and Instance

names should be

between 2 and 32

characters in length.

(Verilog)

Entity names and

instance names should

be between 2 and 32

characters in length.

(VHDL)

A module, instance,
or entity name in the
generated code is less
than 2 characters long, or
more than 32 characters
long.

Update function names or
subsystem names in your
design to be between 2 and
32 characters long.

You can customize
this rule by using the
SignalPortParamNameLength

property of the HDL
coding standard
customization object.

1.A.C.3
Error

Signal names, port

names, parameter

names, define names

and function names

should be between 2

and 40 characters in

length. (Verilog)

Signal names,

variable names, type

names, label names

and function names

should be between 2

and 40 characters in

length. (VHDL)

A signal, port, parameter,
define, or function name
in the generated code is
less than 2 characters
long, or more than 40
characters long.

Update the indicated
name in your design so
that it is between 2 and 40
characters long.

You can customize
this rule by using the
ModuleInstanceEntityNameLength

property of the HDL
coding standard
customization object.

 HDL Coding Standard Rules

16-11

Rule / Severity Message Problem How to fix

1.A.D.1
Warning

Include files must

have extensions

that match ".h",

".vh",".inc", and

".h", ".inc", "ht",

".tsk" for testbench.

(Verilog)

Package file name

should be followed by

"pac.vhd". (VHDL)

The filename extension
of an include file is not
one of the standard
extensions.

Set the Verilog file
extension or VHDL file
extension to one of the
standard extensions.

Use the Verilog
file extension and
VHDL file extension
option in the HDL
Workflow Advisor, or the
VerilogFileExtension

and VHDLFileExtension
properties from the
command line.

2.C.D.1
Error

Do not specify flip-

flop (or RAM) initial

value using initial

construct.

The generated HDL code
for your design contains
an unsynthesizable
initial statement.

Disable the Initialize
block RAM or Initialize
all RAM blocks option
in the HDL Workflow
Advisor.

You can disable this
rule by using the
InitialStatements

property of the HDL
coding standard
customization object.

16 HDL Coding Standards

16-12

Rule / Severity Message Problem How to fix

2.G.C.1a
Message

Nesting in if-else

constructs should

not be deeper than N

levels.

The MATLAB code
contains an if-elseif
statement with more
than N levels of nesting.
By default, N is 3.

Modify if-elseif
statements in your
MATLAB code so there
are N or fewer levels of
nesting.

For example, the following
if-elseif pseudocode
contains 3 levels of
nesting:

if ...

 if ...

 if ...

 else

 else

else

You can customize
this rule by using the
IfElseNesting property
of the HDL coding
standard customization
object.

 HDL Coding Standard Rules

16-13

Rule / Severity Message Problem How to fix

2.G.C.1c
Message

Chain of if...else

if constructs must

not be exceed default

number of levels.

(Verilog)

The chain of "if-

elsif" construct must

not be longer than

default number of

levels. (VHDL)

The generated HDL code
contains an if-elseif
statement with more
than 7 branches.

Modify if-elseif
statements in your
MATLAB code so that the
number of branches is 7 or
fewer.

For example, the following
if-elseif pseudocode
contains 3 branches:

if ...

elseif ...

elseif ...

else

You can customize
this rule by using the
IfElseChain property of
the HDL coding standard
customization object.

2.J.F.5
Warning

Large multipliers

must not be

described using

the multiplication

operator with RTL.

The generated HDL code
contains a multiplication
operator (*) where
the output of the
multiplication has a
bitwidth of 16 or greater.

In your design, implement
multiplications by using a
shift-and-add algorithm,
or ensure that the data
size of the output of a
multiplication does not
require a bitwidth of 16 or
greater.

You can customize
this rule by using the
MultiplierBitWidth

property of the HDL
coding standard
customization object.

16 HDL Coding Standards

16-14

Rule / Severity Message Problem How to fix

3.A.D.5
Message

The maximum number

of characters in one

line should not be

more than N.

The generated HDL code
contains lines greater
than N characters. You
may have a name or
identifier in your original
design that contains more
than N characters.

Shorten names in your
design that are longer
than N characters.

You can also customize N
by using the LineLength
property of the HDL
coding standard
customization object.

3.B.D.1
Error

Non-integer type used

in the declaration

of a generic may be

unsynthesizable.

The generated HDL code
contains a non-integer
data type.

Modify your design so that
it does not use fixed-point
data types.

You can disable this
rule by using the
NonIntegerTypes

property of the HDL
coding standard
customization object.

See Also

Properties
HDL Coding Standard Customization

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB”
• “Generate an HDL Coding Standard Report from Simulink”

More About
• “HDL Coding Standard Report”

 Generate an HDL Lint Tool Script

16-15

Generate an HDL Lint Tool Script
You can generate a lint tool script to use with a third-party lint tool to check your
generated HDL code.

HDL Coder can generate Tcl scripts for the following lint tools:

• Ascent Lint
• HDL Designer
• Leda
• SpyGlass
• Custom

If you specify one of the supported third-party lint tools, you can either generate a default
tool-specific script, or customize the script by specifying the initialization, command,
and termination strings. If you want to generate a script for a custom lint tool, you must
specify the initialization, command, and termination strings.

HDL Coder writes the initialization, command, and termination strings to a Tcl script
that you can use to run the third-party tool.

How To Generate an HDL Lint Tool Script

Using the Configuration Parameters Dialog Box

1 In the Configuration Parameters dialog box, select HDL Code Generation > EDA
Tool Scripts.

2 Select the Lint script option.
3 For Choose lint tool, select Ascent Lint, HDL Designer, Leda, SpyGlass, or

Custom.
4 Optionally, enter text to customize the Lint initialization, Lint command, and

Lint termination strings. For a custom tool, you must specify these fields.

After you generate code, the message window shows a link to the lint tool script.

Using the Command Line

To generate an HDL lint tool script from the command line, set the HDLLintTool
parameter to AscentLint, HDLDesigner, Leda, SpyGlass, or Custom using makehdl
or hdlset_param.

16 HDL Coding Standards

16-16

To disable HDL lint tool script generation, set the HDLLintTool parameter to None.

For example, to generate HDL code and a default SpyGlass lint script for a DUT
subsystem, sfir_fixed\symmetric_fir, enter the following:

makehdl('sfir_fixed/symmetric_fir','HDLLintTool','SpyGlass')

After you generate code, the message window shows a link to the lint tool script.

To generate an HDL lint tool script with custom initialization, command, and
termination strings, use the HDLLintTool, HDLLintInit, HDLLintTerm, and
HDLLintCmd parameters.

For example, you can use the following command to generate a custom Leda lint script
for a DUT subsystem, sfir_fixed\symmetric_fir, with custom initialization,
command, and termination strings:

makehdl('sfir_fixed/symmetric_fir','HDLLintTool','Leda',

 'HDLLintInit','myInitialization','HDLLintCmd','myCommand %s','HDLLintTerm',

 'myTermination')

Custom Lint Tool Command Specification

If you want to generate a lint tool script for a custom lint tool, you must use %s as a
placeholder for the HDL file name in the generated Tcl script.

Specify the Lint command or HDLLintCmd using the following format:

hdlset_param ('HDLLintCmd', 'custom_lint_tool_command -option1 -option2 %s')

For example, to set HDLLintCmd, where the lint command is
custom_lint_tool_command -option1 -option2, at the command line, enter:

hdlset_param ('HDLLintCmd', 'custom_lint_tool_command -option1 -option2 %s')

17

Interfacing Subsystems and Models to
HDL Code

• “Generate Black Box Interface for Subsystem” on page 17-2
• “Generate Reusable Code for Atomic Subsystems” on page 17-8
• “Model Referencing for HDL Code Generation” on page 17-17
• “Generate Black Box Interface for Referenced Model” on page 17-19
• “Create a Xilinx System Generator Subsystem” on page 17-21
• “Create an Altera DSP Builder Subsystem” on page 17-23
• “Using Xilinx System Generator for DSP with HDL Coder” on page 17-26
• “Generate a Cosimulation Model” on page 17-30
• “Customize Black Box or HDL Cosimulation Interface” on page 17-53
• “Pass-Through and No-Op Implementations” on page 17-57

17 Interfacing Subsystems and Models to HDL Code

17-2

Generate Black Box Interface for Subsystem

In this section...

“What Is a Black Box Interface?” on page 17-2
“Generate a Black Box Interface for a Subsystem” on page 17-2
“Generate Code for a Black Box Subsystem Implementation” on page 17-6
“Restriction for Multirate DUTs” on page 17-7

What Is a Black Box Interface?

A black box interface for a subsystem is a generated VHDL component or Verilog module
that includes only the HDL input and output port definitions for the subsystem. By
generating such a component, you can use a subsystem in your model to generate an
interface to existing manually written HDL code, third-party IP, or other code generated
by HDL Coder.

The black box implementation is available only for subsystem blocks below the level of
the DUT. Virtual and atomic subsystem blocks of custom libraries that are below the
level of the DUT also work with black box implementations.

Generate a Black Box Interface for a Subsystem

To generate the interface, select the BlackBox implementation for one or more
Subsystem blocks. Consider the following model that contains a subsystem top, which is
the device under test.

 Generate Black Box Interface for Subsystem

17-3

The subsystem top contains two lower-level subsystems:

Suppose that you want to generate HDL code from top, with a black box interface from
the Interface subsystem. To specify a black box interface:

1 Right-click the Interface subsystem and select HDL Code > HDL Block
Properties.

17 Interfacing Subsystems and Models to HDL Code

17-4

The HDL Properties dialog box appears.
2 Set Architecture to BlackBox.

The following parameters are available for the black box implementation:

 Generate Black Box Interface for Subsystem

17-5

17 Interfacing Subsystems and Models to HDL Code

17-6

The HDL block parameters available for the black box implementation enable you to
customize the generated interface. See “Customize Black Box or HDL Cosimulation
Interface” on page 17-53 for information about these parameters.

3 Change parameters as desired, and click Apply.
4 Click OK to close the HDL Properties dialog box.

Generate Code for a Black Box Subsystem Implementation

When you generate code for the DUT in the ex_blackbox_subsys model, the following
messages appear:
>> makehdl('ex_blackbox_subsys/top')

Generating HDL for 'ex_blackbox_subsys/top'

Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 0 messages.

Begin VHDL Code Generation

Working on ex_blackbox_subsys/top/gencode as hdlsrc\gencode.vhd

Working on ex_blackbox_subsys/top as hdlsrc\top.vhd

HDL Code Generation Complete.

In the progress messages, observe that the gencode subsystem generates a separate
file, gencode.vhd, for its VHDL entity definition. The Interface subsystem does not
generate such a file. The interface code for this subsystem is in top.vhd, generated from
ex_blackbox_subsys/top. The following code listing shows the component definition
and instantiation generated for the Interface subsystem.
 COMPONENT Interface

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 In1 : IN std_logic_vector(7 DOWNTO 0); -- uint8

 In2 : IN std_logic_vector(15 DOWNTO 0); -- uint16

 In3 : IN std_logic_vector(31 DOWNTO 0); -- uint32

 Out1 : OUT std_logic_vector(31 DOWNTO 0) -- uint32

);

 END COMPONENT;

...

 u_Interface : Interface

 PORT MAP(clk => clk,

 clk_enable => enb,

 reset => reset,

 In1 => gencode_out1, -- uint8

 In2 => gencode_out2, -- uint16

 In3 => gencode_out3, -- uint32

 Out1 => Interface_out1 -- uint32

);

 Generate Black Box Interface for Subsystem

17-7

 enb <= clk_enable;

 ce_out <= enb;

 Out1 <= Interface_out1;

By default, the black box interface generated for subsystems includes clock, clock enable,
and reset ports. “Customize Black Box or HDL Cosimulation Interface” on page 17-53
describes how you can rename or suppress generation of these signals, and customize
other aspects of the generated interface.

Restriction for Multirate DUTs

You can generate at most one clock port and one clock enable port for a black box
subsystem. Therefore, the black box subsystem must be single-rate even if it is in a
multirate DUT.

17 Interfacing Subsystems and Models to HDL Code

17-8

Generate Reusable Code for Atomic Subsystems

In this section...

“Requirements for Generating Reusable Code for Atomic Subsystems” on page 17-8
“Generate Reusable Code for Identical Atomic Subsystems” on page 17-8
“Generate Reusable Code for Atomic Subsystems with Tunable Mask Parameters” on
page 17-11

HDL Coder can detect atomic subsystems that are identical, or identical except for
their mask parameter values, at any level of the model hierarchy, and generate a single
reusable HDL module or entity. The reusable HDL code is generated as a single file.

Requirements for Generating Reusable Code for Atomic Subsystems

To generate reusable HDL code for atomic subsystems:

• HandleAtomicSubsystem must be on.
• The InlineParams Simulink configuration parameter must be on.
• If the atomic subsystems are identical except for their tunable mask parameter

values, MaskParameterAsGeneric must be on.

Generate Reusable Code for Identical Atomic Subsystems

The HandleAtomicSubsystem property for makehdl lets you control generation of
reusable code for atomic subsystems. HandleAtomicSubsystem is enabled by default.
If you do not wish to generate reusable code for identical atomic subsystems, you can
disable HandleAtomicSubsystem in your makehdl command, as shown in the following
example.
makehdl(simplevectorsum_3atomics/DUT,'HandleAtomicSubsystem','off')

An example of a subsystem containing identical subsystems is shown in the following
figures.

 Generate Reusable Code for Atomic Subsystems

17-9

17 Interfacing Subsystems and Models to HDL Code

17-10

The DUT subsystem contains three subsystems that are identical except for their
subsystem names.

By default, HDL Coder generates a single source file, vsum.vhd, that provides the
required entity and architecture definition for the vsum component. The listing below
shows the makehdl command and its progress messages.
>> makehdl('simplevectorsum_3atomics/DUT')

Generating HDL for 'simplevectorsum_3atomics/DUT'

Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 0 messages.

Begin VHDL Code Generation

Working on simplevectorsum_3atomics/DUT/vsum as hdlsrc\vsum.vhd

Working on simplevectorsum_3atomics/DUT as hdlsrc\DUT.vhd

Generating package file hdlsrc\DUT_pkg.vhd

HDL Code Generation Complete.

 Generate Reusable Code for Atomic Subsystems

17-11

The file generated for the DUT subsystem (DUT.vhd) contains three instantiations of the
vsum component, as shown in the following listing.
ARCHITECTURE rtl OF DUT IS

 -- Component Declarations

 COMPONENT vsum

 PORT(In1 : IN vector_of_std_logic_vector16(0 TO 9); -- int16 [10]

 Out1 : OUT std_logic_vector(19 DOWNTO 0) -- sfix20

);

 END COMPONENT;

 -- Component Configuration Statements

 FOR ALL : vsum

 USE ENTITY work.vsum(rtl);

 -- Signals

 SIGNAL vsum_out1 : std_logic_vector(19 DOWNTO 0); -- ufix20

 SIGNAL vsum1_out1 : std_logic_vector(19 DOWNTO 0); -- ufix20

 SIGNAL vsum2_out1 :std_logic_vector(19 DOWNTO 0); -- ufix20

BEGIN

 u_vsum : vsum

 PORT MAP(In1 => In1, -- int16 [10]

 Out1 => vsum_out1 -- sfix20

);

 u_vsum1 : vsum

 PORT MAP(In1 => In2, -- int16 [10]

 Out1 => vsum1_out1 -- sfix20

);

 u_vsum2 : vsum

 PORT MAP(In1 => In3, -- int16 [10]

 Out1 => vsum2_out1 -- sfix20

);

 Out1 <= vsum_out1;

 Out2 <= vsum1_out1;

 Out3 <= vsum2_out1;

END rtl;

Generate Reusable Code for Atomic Subsystems with Tunable Mask
Parameters

The MaskParameterAsGeneric property for makehdl lets you control generation of
reusable code for atomic subsystems. MaskParameterAsGeneric is disabled by default.
If you wish to generate reusable code for identical atomic subsystems, you can enable
MaskParameterAsGeneric in your makehdl command, as shown in the following
example.

makehdl(mgenerics/DUT,'MaskParameterAsGeneric','on')

17 Interfacing Subsystems and Models to HDL Code

17-12

See also “Generate parameterized HDL code from masked subsystem”.

The following figures show an example of a DUT subsystem containing atomic
subsystems that are identical except for their tunable mask parameter values.

 Generate Reusable Code for Atomic Subsystems

17-13

In mgenerics/DUT, the gain modules are subsystems with gain values represented
by tunable mask parameters. Gain values are 0.6 for Gain_Module1, 2.4 for
Gain_Module2, and 6.8 for Gain_Module3.

17 Interfacing Subsystems and Models to HDL Code

17-14

When you enable Generate parameterized HDL code from masked subsystem,
HDL Coder generates a single source file, Gain_Module1.v. This file provides the
module definition for the gain module component. The listing below shows the makehdl
command and its progress messages.

>> makehdl('mgenerics/DUT','TargetLanguage','Verilog')

Generating HDL for 'mgenerics/DUT'

Starting HDL Check.

HDL Check Complete with 0 errors, 0 warnings and 0 messages.

Begin Verilog Code Generation

Working on mgenerics/DUT/Gain_Module1 as hdl_prj\hdlsrc\Gain_Module1.v

Working on mgenerics/DUT as hdl_prj\hdlsrc\DUT.v

Generating HTML files for code generation report

 in s:\mask2generics_example\hdl_prj\hdlsrc\html\mgenerics directory ...

HDL Code Generation Complete.

The file generated for the DUT subsystem (DUT.v) contains three instantiations of the
Gain_Module1 component, as shown in the following listing.
module DUT

 (

 In1,

 In2,

 In3,

 Out1,

 Out2,

 Out3

);

 input signed [15:0] In1; // sfix16_En12

 input signed [15:0] In2; // sfix16_En12

 input signed [15:0] In3; // sfix16_En12

 output signed [31:0] Out1; // sfix32_En24

 output signed [31:0] Out2; // sfix32_En24

 output signed [31:0] Out3; // sfix32_En24

 wire signed [31:0] Gain_Module1_out1; // sfix32_En24

 wire signed [31:0] Gain_Module2_out1; // sfix32_En24

 wire signed [31:0] Gain_Module3_out1; // sfix32_En24

 // <S1>/Gain_Module1

 Gain_Module1 # (.param_gain(2458)

)

 u_Gain_Module1 (.In1(In1), // sfix16_En12

 .Out1(Gain_Module1_out1) // sfix32_En24

);

 Generate Reusable Code for Atomic Subsystems

17-15

 assign Out1 = Gain_Module1_out1;

 // <S1>/Gain_Module2

 Gain_Module1 # (.param_gain(9830)

)

 u_Gain_Module2 (.In1(In2), // sfix16_En12

 .Out1(Gain_Module2_out1) // sfix32_En24

);

 assign Out2 = Gain_Module2_out1;

 // <S1>/Gain_Module3

 Gain_Module1 # (.param_gain(27853)

)

 u_Gain_Module3 (.In1(In3), // sfix16_En12

 .Out1(Gain_Module3_out1) // sfix32_En24

);

 assign Out3 = Gain_Module3_out1;

endmodule // DUT

The file generated for the Gain_Module1 block contains a Verilog parameter,
param_gain, as shown in the following listing.

module Gain_Module1

 (

 In1,

 Out1

);

 input signed [15:0] In1; // sfix16_En12

 output signed [31:0] Out1; // sfix32_En24

 parameter signed [15:0] param_gain = 2458; // sfix16_En12

 wire signed [15:0] kconst; // sfix16_En12

 wire signed [31:0] Gain_out1; // sfix32_En24

 assign kconst = param_gain;

 // <S2>/Gain

 assign Gain_out1 = In1 * kconst;

 assign Out1 = Gain_out1;

17 Interfacing Subsystems and Models to HDL Code

17-16

endmodule // Gain_Module1

 Model Referencing for HDL Code Generation

17-17

Model Referencing for HDL Code Generation
In this section...

“Benefits of Model Referencing for Code Generation” on page 17-17
“How To Generate Code for a Referenced Model” on page 17-17
“Limitations for Model Reference Code Generation” on page 17-18

Benefits of Model Referencing for Code Generation

Model referencing in your DUT subsystem enables you to:

• Partition a large design into a hierarchy of smaller designs for reuse, modular
development, and accelerated simulation.

• Incrementally generate and test code.

HDL Coder incrementally generates code for referenced models according to the
Configuration Parameters dialog box > Model Referencing pane > Rebuild
options.

However, HDL Coder treats If any changes detected and If any changes
in known dependencies detected as the same. For example, if you set
Rebuild to either If any changes detected or If any changes in known
dependencies detected, HDL Coder regenerates code for referenced models only
when the referenced models have changed.

How To Generate Code for a Referenced Model

Using the UI

To generate HDL code for referenced model using the UI:

1 Right-click the Model block and select HDL Code > HDL Block Properties.
2 For Architecture, select ModelReference.
3 Generate HDL code from your DUT subsystem.

Tip If you encounter typing or naming conflicts between vector ports when interfacing
two or more generated VHDL code modules, consider using the “ScalarizePorts” property
to generate nonconflicting port definitions.

17 Interfacing Subsystems and Models to HDL Code

17-18

Using the Command Line

To generate HDL code for a referenced model using the command line:

1 Set the Architecture property of the Model block to ModelReference.
2 Generate HDL code for your DUT subsystem.

For example, to generate HDL code for a DUT subsystem, mydut, that includes a model
reference, referenced_model, at the command line, enter:

hdlset_param ('mydut/referenced_model', 'Architecture', 'ModelReference');

makehdl ('mydut');

Tip If you encounter typing or naming conflicts between vector ports when interfacing
two or more generated VHDL code modules, consider using the “ScalarizePorts” property
to generate nonconflicting port definitions.

Limitations for Model Reference Code Generation

For model reference code generation restrictions, see Model.

 Generate Black Box Interface for Referenced Model

17-19

Generate Black Box Interface for Referenced Model

In this section...

“When to Generate a Black Box Interface” on page 17-19
“How to Generate a Black Box Interface” on page 17-19

When to Generate a Black Box Interface

Specify a black box implementation for the Model block when you already have legacy
or manually-written HDL code. HDL Coder generates the HDL code that is required to
interface to the referenced HDL code.

Code is generated with the following assumptions:

• Every HDL entity or module requires clock, clock enable, and reset ports. Therefore,
these ports are defined for each generated entity or module.

• Use of Simulink data types is assumed. For VHDL code, port data types are assumed
to be STD_LOGIC or STD_LOGIC_VECTOR.

If you want to generate code for a multirate, multiclock DUT that includes a referenced
model, see “Model Referencing for HDL Code Generation”.

How to Generate a Black Box Interface

To instantiate an HDL wrapper, or black box interface, for a referenced model:

1 Right-click the Model block and select HDL Code > HDL Block Properties.

In the HDL Block Properties dialog box:

• For Architecture, select BlackBox.
• Customize the ports and other implementation parameters. To learn more about

customizing the ports, see “Customize Black Box or HDL Cosimulation Interface”.
2 Generate HDL code for your DUT subsystem.

Note: The checkhdl function does not check port data types within the referenced
model.

17 Interfacing Subsystems and Models to HDL Code

17-20

Tip If you encounter typing or naming conflicts between vector ports when interfacing
two or more generated VHDL code modules, consider using the “ScalarizePorts” property
to generate nonconflicting port definitions.

 Create a Xilinx System Generator Subsystem

17-21

Create a Xilinx System Generator Subsystem

In this section...

“Why Use Xilinx System Generator Subsystems?” on page 17-21
“Requirements for Xilinx System Generator Subsystems” on page 17-21
“How to Create a Xilinx System Generator Subsystem” on page 17-22
“Limitations for Code Generation from Xilinx System Generator Subsystems” on page
17-22

Why Use Xilinx System Generator Subsystems?

You can generate HDL code from a model with both Simulink and Xilinx blocks using
Xilinx System Generator (XSG) subsystems.

Using both Simulink and Xilinx blocks in your model provides the following benefits:

• A single platform for combined Simulink and Xilinx System Generator simulation,
code generation, and synthesis.

• Targeted code generation: Xilinx System Generator for DSP generates code from
Xilinx blocks; HDL Coder generates code from Simulink blocks.

• HDL Coder area and speed optimizations for Simulink components.

Requirements for Xilinx System Generator Subsystems

You must group your Xilinx blocks into one or more Xilinx System Generator (XSG)
subsystems for code generation. An XSG subsystem can contain a hierarchy of
subsystems.

To generate code from a Xilinx System Generator subsystem, you must use ISE Design
Suite 13.4 or later.

An XSG subsystem is a Subsystem block with:

• Architecture set to Module.
• One System Generator token, placed at the top level of the XSG subsystem hierarchy.
• Xilinx blocks.
• Simulink blocks not requiring code generation.

17 Interfacing Subsystems and Models to HDL Code

17-22

• Input and output ports connected directly to Gateway In or Gateway Out blocks.
• Propagate data type to output option enabled on Gateway Out blocks.
• Matching input and output data types on Gateway In blocks. See “Limitations for

Code Generation from Xilinx System Generator Subsystems” on page 17-22.

How to Create a Xilinx System Generator Subsystem

1 Create a subsystem containing the Xilinx blocks and set its architecture to "Module".
2 Add a System Generator token at the top level of the subsystem.

You can have subsystem hierarchy in a Xilinx System Generator subsystem, but
there must be a System Generator token at the top level of the hierarchy.

3 Connect each subsystem input or output port directly to a Gateway In or Gateway
Out block.

4 On each Gateway Out block, select the Propagate data type to output option.

For an example of HDL code generation from a Xilinx System Generator subsystem, see
“Using Xilinx System Generator for DSP with HDL Coder” on page 17-26.

Limitations for Code Generation from Xilinx System Generator
Subsystems

Code generation from Xilinx System Generator (XSG) subsystems has the following
limitations:

• ConstrainedOutputPipeline, InputPipeline, and OutputPipeline are the
only valid block properties for an XSG subsystem.

• HDL Coder does not generate code for blocks within an XSG subsystem, including
Simulink blocks.

• Gateway In blocks must not do nontrivial data type conversion. For example, a
Gateway In block can convert between the sfix8_en6 and Fix_8_6 data types, but
changing data sign, word length, or fraction length is not allowed.

• For Verilog code generation, Simulink block names in your design cannot be the same
as Xilinx names. Similarly, Xilinx blocks in your design cannot have the same name
as other Xilinx blocks. HDL Coder cannot resolve these name conflicts, and generates
an error late in the code generation process.

 Create an Altera DSP Builder Subsystem

17-23

Create an Altera DSP Builder Subsystem

In this section...

“Why Use Altera DSP Builder Subsystems?” on page 17-23
“Requirements for Altera DSP Builder Subsystems” on page 17-23
“How to Create an Altera DSP Builder Subsystem” on page 17-24
“Determine Clocking Requirements for Altera DSP Builder Subsystems” on page
17-24
“Limitations for Code Generation from Altera DSP Builder Subsystems” on page
17-25

Why Use Altera DSP Builder Subsystems?

You can generate HDL code from a model with both Simulink and Altera DSP Builder
Advanced blocks using Altera DSP Builder (DSPB) subsystems.

Using both Simulink and Altera blocks in your model provides the following benefits:

• A single platform for combined Simulink and Altera DSP Builder simulation, code
generation, and synthesis.

• Targeted code generation: Altera DSP Builder generates code from Altera blocks;
HDL Coder generates code from Simulink blocks.

• HDL Coder area and speed optimizations for Simulink components.

Requirements for Altera DSP Builder Subsystems

You must group your Altera blocks into one or more Altera DSP Builder (DSPB)
subsystems for code generation. A DSPB subsystem can contain a hierarchy of
subsystems.

To generate code from a Altera DSP Builder subsystem, you must use Quartus II 13.0 or
later.

A DSPB subsystem is a Subsystem block with:

• Architecture set to Module.

17 Interfacing Subsystems and Models to HDL Code

17-24

• A valid DSP Builder Advanced Blockset design, including a top-level Device block and
DSP Builder Advanced blocks, as defined in the Altera DSP Builder documentation.

How to Create an Altera DSP Builder Subsystem

1 Create an Altera DSP Builder Advanced Blockset design as defined in the Altera
DSP Builder documentation.

2 Create a subsystem containing the Altera DSP Builder Advanced Blockset design,
and set its Architecture to Module.

To see an example that shows HDL code generation for an Altera DSP Builder
subsystem, see Using Altera DSP Builder Advanced Blockset with HDL Coder.

Determine Clocking Requirements for Altera DSP Builder Subsystems

DSPB subsystems must either run at the DUT subsystem base rate, or you can provide a
custom clock.

Determining the DUT subsystem base rate can be an iterative process. Area
optimizations, such as RAM mapping or resource sharing, may cause HDL Coder to
oversample area-optimized parts of the design. Therefore, the DUT subsystem initial
base rate may differ from the final base rate, and you may not know the model base rate
until you generate code.

To determine the model base rate, iteratively generate code until your model converges
on a base rate:

1 Generate code for the DUT subsystem that contains your DSPB subsystem.
2 If HDL Coder displays an error message that says that your DSPB subsystem rate

is slower than the base rate, modify the DSPB subsystem inputs so that the DSPB
subsystem runs at the base rate in the message.

For example, you can insert an Upsample block.
3 Repeat these steps until your DSPB subsystem rate matches the base rate.

To provide a custom clock for your DSPB subsystem:

1 In the HDL Workflow Advisor, for HDL Code Generation > Set Code
Generation Options > Set Advanced Options > Clock inputs, select Multiple.

 Create an Altera DSP Builder Subsystem

17-25

2 In the generated HDL code, connect your custom clocks to the DUT clock input ports
that corresponds to your DSPB subsystems clock.

Limitations for Code Generation from Altera DSP Builder Subsystems

Code generation for Altera DSP Builder (DSPB) subsystems has the following
limitations:

• The DUT subsystem cannot be a DSPB subsystem.
• DSPB subsystems must run at the Simulink model base rate. You may need to

iteratively generate code to determine the base rate, because area optimizations can
cause local multirate. See “Determine Clocking Requirements for Altera DSP Builder
Subsystems” for a workflow.

• Altera blocks with bus interfaces are not supported.
• Altera DSP Builder does not generate Verilog code.
• Test bench simulation mismatches can occur because the Simulink data comparison

does not take Altera valid signals into account. For an example and workaround, see
Using Altera DSP Builder Advanced Blockset with HDL Coder.

17 Interfacing Subsystems and Models to HDL Code

17-26

Using Xilinx System Generator for DSP with HDL Coder

This example shows how to use Xilinx® System Generator for DSP with HDL Coder™.

Setup for Xilinx® System Generator

In order to use the Xilinx® System Generator Subsystem block, you must have Xilinx®
ISE 13.4 set up with Simulink®.

Introduction

Using the Xilinx® System Generator Subsystem block enables you to model designs
using blocks from both Simulink® and Xilinx®, and to automatically generate integrated
HDL code. HDL Coder™ generates HDL code from the Simulink® blocks, and uses
Xilinx® System Generator to generate HDL code from the Xilinx® System Generator
Subsystem blocks.

In this example, the design, or code generation subsystem, contains two parts: one with
Simulink® native blocks, and one with Xilinx® blocks. The Xilinx® blocks are grouped in
a Xilinx® System Generator Subsystem (hdlcoder_slsysgen/SLandSysGen/Xilinx System
Generator Subsystem). System Generator optimizes these blocks for Xilinx® FPGAs.
In the rest of the design, Simulink® blocks and HDL Coder™ offer many model-based
design features, such as distributed pipelining and delay balancing, to perform model-
level optimizations.

open_system('hdlcoder_slsysgen');

open_system('hdlcoder_slsysgen/SLandSysGen');

 Using Xilinx System Generator for DSP with HDL Coder

17-27

Create Xilinx® System Generator Subsystem

To create a Xilinx® System Generator subsystem:

1 Put the Xilinx® blocks in one subsystem and set its architecture to "Module" (the
default value).

2 Place a System Generator token at the top level of the subsystem. You can have
subsystem hierarchy in a Xilinx® System Generator Subsystem, but there must be a
System Generator token at the top level of the hierarchy.

open_system('hdlcoder_slsysgen/SLandSysGen/Xilinx System Generator Subsystem');

17 Interfacing Subsystems and Models to HDL Code

17-28

Configure Gateway In and Gateway Out Blocks

In each Xilinx® System Generator subsystem, you must connect input and output ports
directly to Gateway In and Gateway Out blocks.

Gateway In blocks must not do non-trivial data type conversion. For example, a Gateway
In block can convert between uint8 and UFix_8_0, but changing data sign, word length,
or fraction length is not allowed.

Perform Model-Level Optimizations for Simulink® Components

In this example, a sum tree is modeled with Simulink® blocks. The distributed pipelining
feature can take care of the speed optimization.

Here the Output Pipeline property of hdlcoder_slsysgen/SLandSysGen/Simulink
Subsystem is set to "4" and the Distributed Pipelining property is set to "on". Pipeline
registers inserted by the distributed pipelining feature will be pushed into the sum tree
to reduce the critical path without changing the model function. Other optimizations,
such as resource sharing, are also available, but not used in this example.

open_system('hdlcoder_slsysgen/SLandSysGen/Simulink Subsystem');

 Using Xilinx System Generator for DSP with HDL Coder

17-29

Generate HDL Code

You can use either makehdl at the command line or HDL Workflow Advisor to generate
HDL code. To use makehdl:

makehdl('hdlcoder_slsysgen/SLandSysGen');

You can also generate a testbench, simulate, and synthesize the design as you would for
any other model.

17 Interfacing Subsystems and Models to HDL Code

17-30

Generate a Cosimulation Model

In this section...

“What Is A Cosimulation Model?” on page 17-30
“Generating a Cosimulation Model from the GUI” on page 17-31
“Structure of the Generated Model” on page 17-36
“Launching a Cosimulation” on page 17-43
“The Cosimulation Script File” on page 17-46
“Complex and Vector Signals in the Generated Cosimulation Model” on page 17-48
“Generating a Cosimulation Model from the Command Line” on page 17-50
“Naming Conventions for Generated Cosimulation Models and Scripts” on page
17-51
“Limitations for Cosimulation Model Generation” on page 17-51

Note: To use this feature, your installation must include an HDL Verifier license.

What Is A Cosimulation Model?

A cosimulation model is an automatically generated Simulink model configured for both
Simulink simulation and cosimulation of your design with an HDL simulator. HDL
Coder supports automatic generation of a cosimulation model as a part of the test bench
generation process.

The cosimulation model includes:

• A behavioral model of your design, realized in a Simulink subsystem.
• A corresponding HDL Cosimulation block, configured to cosimulate the design using

HDL Verifier. HDL Coder configures the HDL Cosimulation block for use with either
Mentor Graphics ModelSim or Cadence Incisive.

• Test input data, calculated from the test bench stimulus that you specify.
• Scope blocks, which let you observe and compare the DUT and HDL cosimulation

outputs, and any error between these signals.

 Generate a Cosimulation Model

17-31

• Goto and From blocks that capture the stimulus and response signals from the DUT
and use these signals to drive the cosimulation.

• A comparison/assertion mechanism that reports discrepancies between the original
DUT output and the cosimulation output .

In addition to the generated model, HDL Coder generates a TCL script that launches and
configures your cosimulation tool. Comments in the script file document clock, reset, and
other timing signal information defined by the coder for the cosimulation tool.

Generating a Cosimulation Model from the GUI

This example demonstrates the process for generating a cosimulation model. The
example model, hdl_cosim_demo1, implements a simple multiply and accumulate
(MAC) algorithm. Open the model by entering the name at the MATLAB command line:

hdl_cosim_demo1

The following figure shows the top-level model.

The DUT is the MAC subsystem.

17 Interfacing Subsystems and Models to HDL Code

17-32

Cosimulation model generation takes place during generation of the test bench. As a best
practice, generate HDL code before generating a test bench, as follows:

1 In the HDL Code Generation pane of the Configuration Parameters dialog box,
select the DUT for code generation. In this case, it is hdl_cosim_demo1/MAC.

 Generate a Cosimulation Model

17-33

2 Click Apply.
3 Click Generate. HDL Coder displays progress messages, as shown in the following

listing:
Applying HDL Code Generation Control Statements

Starting HDL Check.

HDL Check Complete with 0 error, 0 warning and 0 message.

Begin VHDL Code Generation

Working on hdl_cosim_demo1/MAC as hdlsrc\MAC.vhd

HDL Code Generation Complete.

Next, configure the test bench options to include generation of a cosimulation model:

17 Interfacing Subsystems and Models to HDL Code

17-34

1 Select the HDL Code Generation > Test Bench pane of the Configuration
Parameters dialog box.

2 Select the Cosimulation model for use with: option. Selecting this check box
enables the pulldown menu to the right.

3 Select the desired cosimulation tool from the dropdown menu.
4 Configure required test bench options. HDL Coder records option settings in a

generated script file (see “The Cosimulation Script File” on page 17-46).
5 Click Apply.

Next, generate test bench code and the cosimulation model:

1 Click Generate Test Bench. HDL Coder displays progress messages as shown in
the following listing:

 Generate a Cosimulation Model

17-35

Begin TestBench Generation

Generating new cosimulation model: gm_hdl_cosim_demo1_mq0.mdl

Generating new cosimulation tcl script: hdlsrc/gm_hdl_cosim_demo1_mq0_tcl.m

Cosimulation Model Generation Complete.

Generating Test bench: hdlsrc\MAC_tb.vhd

Please wait ...

HDL TestBench Generation Complete.

When test bench generation completes, HDL Coder opens the generated cosimulated
model. The following figure shows the generated model.

2 Save the generated model. The generated model exists only in memory unless you
save it.

As indicated by the code generation messages, HDL Coder generates the following files in
addition to the usual HDL test bench file:

17 Interfacing Subsystems and Models to HDL Code

17-36

• A cosimulation model (gm_hdl_cosim_demo1_mq)
• A file that contains a TCL cosimulation script and information about settings of the

cosimulation model (gm_hdl_cosim_demo1_mq_tcl.m)

Generated file names derive from the model name, as described in “Naming Conventions
for Generated Cosimulation Models and Scripts” on page 17-51.

The next section, “Structure of the Generated Model” on page 17-36, describes
the features of the model. Before running a cosimulation, become familiar with these
features.

Structure of the Generated Model

You can set up and launch a cosimulation using controls located in the generated model.
This section examines the model generated from the example MAC subsystem.

Simulation Path

The model comprises two parallel signal paths. The simulation path, located in the upper
half of the model window, is nearly identical to the original DUT. The purpose of the
simulation path is to execute a normal Simulink simulation and provide a reference
signal for comparison to the cosimulation results. The following figure shows the
simulation path.

The two subsystems labelled ToCosimSrc and ToCosimSink do not change the
performance of the simulation path. Their purpose is to capture stimulus and response
signals of the DUT and route them to and from the HDL cosimulation block (see “Signal
Routing Between Simulation and Cosimulation Paths” on page 17-39).

 Generate a Cosimulation Model

17-37

Cosimulation Path

The cosimulation path, located in the lower half of the model window, contains the
generated HDL Cosimulation block. The following figure shows the cosimulation path.

The FromCosimSrc subsystem receives the same input signals that drive the DUT. In
the gm_hdl_cosim_demo1_mq0 model, the subsystem simply passes the inputs on to
the HDL Cosimulation block. Signals of some other data types require further processing
at this stage (see “Signal Routing Between Simulation and Cosimulation Paths” on page
17-39).

The Compare subsystem at the end of the cosimulation path compares the cosimulation
output to the reference output produced by the simulation path. If the comparison
detects a discrepancy, an Assertion block in the Compare subsystem displays a warning
message. If desired, you can disable assertions and control other operations of the
Compare subsystem. See “Controlling Assertions and Scope Displays” on page 17-41
for details.

HDL Coder populates the HDL Cosimulation block with the compiled I/O interface of the
DUT. The following figure shows the Ports pane of the Mac_mq HDL Cosimulation block.

17 Interfacing Subsystems and Models to HDL Code

17-38

HDL Coder sets the Full HDL Name, Sample Time, Data Type, and other fields
as required by the model. HDL Coder also configures other HDL Cosimulation block
parameters under the Timescales and Tcl panes.

Tip HDL Coder configures the generated HDL Cosimulation block for the Shared
Memory connection method.

 Generate a Cosimulation Model

17-39

Start Simulator Control

When you double-click the Start Simulator control, it launches the selected cosimulation
tool and passes in a startup command to the tool. The Start Simulator icon displays the
startup command, as shown in the following figure.

The commands executed when you double-click the Start Simulator icon launch and set
up the cosimulation tool, but they do not start the actual cosimulation. “Launching a
Cosimulation” on page 17-43 describes how to run a cosimulation with the generated
model.

Signal Routing Between Simulation and Cosimulation Paths

The generated model routes signals between the simulation and cosimulation paths
using Goto and From blocks. For example, the Goto blocks in the ToCosimSrc subsystem
route each DUT input signal to a corresponding From block in the FromCosimSrc
subsystem. The following figures show the Goto and From blocks in each subsystem.

17 Interfacing Subsystems and Models to HDL Code

17-40

 Generate a Cosimulation Model

17-41

The preceding figures show simple scalar inputs. Signals of complex and vector data
types require further processing. See “Complex and Vector Signals in the Generated
Cosimulation Model” on page 17-48 for further information.

Controlling Assertions and Scope Displays

The Compare subsystem lets you control the display of signals on scopes, and warning
messages from assertions. The following figure shows the Compare subsystem for the
gm_hdl_cosim_demo1_mq0 model.

17 Interfacing Subsystems and Models to HDL Code

17-42

For each output of the DUT, HDL Coder generates an assertion checking subsystem
(Assert_OutN). The subsystem computes the difference (err) between the original
DUT output (dut ref) and the corresponding cosimulation output (cosim). The
subsystem routes the comparison result to an Assertion block. If the comparison result is
not zero, the Assertion block reports the discrepancy.

The following figure shows the Assert_Out1 subsystem for the
gm_hdl_cosim_demo1_mq0 model.

 Generate a Cosimulation Model

17-43

This subsystem also routes the dut ref, cosim, and err signals to a Scope for display
at the top level of the model.

By default, the generated cosimulation model enables all assertions and displays all
Scopes. Use the buttons on the Compare subsystem to disable assertions or hide Scopes.

Tip Assertion messages are warnings and do not stop simulation.

Launching a Cosimulation

To run a cosimulation with the generated model:

1 Double-click the Compare subsystem to configure Scopes and assertion settings.

If you want to disable Scope displays or assertion warnings before starting your
cosimulation, use the buttons on the Compare subsystem (shown in the following
figure).

17 Interfacing Subsystems and Models to HDL Code

17-44

2 Double-click the Start Simulator control.

The Start Simulator control launches your HDL simulator (in this case, HDL
Verifier for use with Mentor Graphics ModelSim).

The HDL simulator in turn executes a startup script. In this case the startup script
consists of the TCL commands located in gm_hdl_cosim_demo1_mq0_tcl.m. When
the HDL simulator finishes executing the startup script, it displays a message like
the following.

Ready for cosimulation...

3 In the Simulink Editor for the generated model, start simulation.

As the cosimulation runs, the HDL simulator displays messages like the following.
Running Simulink Cosimulation block.

Chip Name: --> hdl_cosim_demo1/MAC

Target language: --> vhdl

Target directory: --> hdlsrc

 Generate a Cosimulation Model

17-45

Fri Jun 05 4:26:34 PM Eastern Daylight Time 2009

Simulation halt requested by foreign interface.

done

At the end of the cosimulation, if you have enabled Scope displays, the compare scope
displays the following signals:

• cosim: The result signal output by the HDL Cosimulation block.
• dut ref: The reference output signal from the DUT.
• err: The difference (error) between these two outputs.

The following figure shows these signals.

17 Interfacing Subsystems and Models to HDL Code

17-46

The Cosimulation Script File

The generated script file has two sections:

• A comment section that documents model settings that are relevant to cosimulation.
• A function that stores several lines of TCL code into a variable, tclCmds. The

cosimulation tools execute these commands when you launch a cosimulation.

 Generate a Cosimulation Model

17-47

Header Comments Section

The following listing shows the comment section of a script file generated for the
hdl_cosim_demo1 model:
%%%

% Auto generated cosimulation 'tclstart' script

%%%

% Source Model : hdl_cosim_demo1.mdl

% Generated Model : gm_hdl_cosim_demo1.mdl

% Cosimulation Model : gm_hdl_cosim_demo1_mq.mdl

%

% Source DUT : gm_hdl_cosim_demo1_mq/MAC

% Cosimulation DUT : gm_hdl_cosim_demo1_mq/MAC_mq

%

% File Location : hdlsrc/gm_hdl_cosim_demo1_mq_tcl.m

% Created : 2009-06-16 10:51:01

%

% Generated by MATLAB 7.9 and HDL Coder 1.6

%%%

%%%

% ClockName : clk

% ResetName : reset

% ClockEnableName : clk_enable

%

% ClockLowTime : 5ns

% ClockHighTime : 5ns

% ClockPeriod : 10ns

%

% ResetLength : 20ns

% ClockEnableDelay : 10ns

% HoldTime : 2ns

%%%

%%%

% ModelBaseSampleTime : 1

% OverClockFactor : 1

%%%

%%%

% Mapping of DutBaseSampleTime to ClockPeriod

%

% N = (ClockPeriod / DutBaseSampleTime) * OverClockFactor

% 1 sec in Simulink corresponds to 10ns in the HDL

% Simulator(N = 10)

%

%%%

%%%

% ResetHighAt : (ClockLowTime + ResetLength + HoldTime)

% ResetRiseEdge : 27ns

% ResetType : async

% ResetAssertedLevel : 1

%

% ClockEnableHighAt : (ClockLowTime + ResetLength + ClockEnableDelay + HoldTime)

% ClockEnableRiseEdge : 37ns

%%%

The comments section comprises the following subsections:

17 Interfacing Subsystems and Models to HDL Code

17-48

• Header comments: This section documents the files names for the source and
generated models and the source and generated DUT.

• Test bench settings: This section documents the makehdltb property values that
affect cosimulation model generation. The generated TCL script uses these values to
initialize the cosimulation tool.

• Sample time information: The next two sections document the base sample time and
oversampling factor of the model. HDL Coder uses ModelBaseSampleTime and
OverClockFactor to map the clock period of the model to the HDL cosimulation
clock period.

• Clock, clock enable, and reset waveforms: This section documents the computations of
the duty cycle of the clk, clk_enable, and reset signals.

TCL Commands Section

The following listing shows the TCL commands section of a script file generated for the
hdl_cosim_demo1 model:
function tclCmds = gm_hdl_cosim_demo1_mq_tcl

tclCmds = {

 'do MAC_compile.do',...% Compile the generated code

 'vsimulink work.MAC',...% Initiate cosimulation

 'add wave /MAC/clk',...% Add wave commands for chip input signals

 'add wave /MAC/reset',...

 'add wave /MAC/clk_enable',...

 'add wave /MAC/In1',...

 'add wave /MAC/In2',...

 'add wave /MAC/ce_out',...% Add wave commands for chip output signals

 'add wave /MAC/Out1',...

 'set UserTimeUnit ns',...% Set simulation time unit

 'puts ""',...

 'puts "Ready for cosimulation..."',...

};

end

Complex and Vector Signals in the Generated Cosimulation Model

Input signals of complex or vector data types require insertion of additional elements into
the cosimulation path. this section describes these elements.

Complex Signals

The generated cosimulation model automatically breaks complex inputs into real and
imaginary parts. The following figure shows a FromCosimSrc subsystem that receives
two complex input signals. The subsystem breaks the inputs into real and imaginary
parts before passing them to the subsystem outputs.

 Generate a Cosimulation Model

17-49

The model maintains the separation of real and imaginary components throughout the
cosimulation path. The Compare subsystem performs separate comparisons and separate
scope displays for the real and imaginary signal components.

Vector Signals

The generated cosimulation model flattens vector inputs. The following figure shows a
FromCosimSrc subsystem that receives two vector input signals of dimension 2. The
subsystem flattens the inputs into scalars before passing them to the subsystem outputs.

17 Interfacing Subsystems and Models to HDL Code

17-50

Generating a Cosimulation Model from the Command Line

To generate a cosimulation model from the command line, pass the
GenerateCosimModel property to the makehdltb function. GenerateCosimModel
takes one of the following property values:

• 'ModelSim' : generate a cosimulation model configured for HDL Verifier for use with
Mentor Graphics ModelSim.

• 'Incisive': generate a cosimulation model configured for HDL Verifier for use with
Cadence Incisive.

In the following command, makehdltb generates a cosimulation model configured for
HDL Verifier for use with Mentor Graphics ModelSim.
makehdltb('hdl_cosim_demo1/MAC','GenerateCosimModel','ModelSim');

 Generate a Cosimulation Model

17-51

Naming Conventions for Generated Cosimulation Models and Scripts

The naming convention for generated cosimulation models is

prefix_modelname_toolid_suffix, where:

• prefix is the string gm.
• modelname is the name of the generating model.
• toolid is an identifier indicating the HDL simulator chosen by the Cosimulation

model for use with: option. Valid toolid strings are 'mq' and 'in'.
• suffix is an integer that provides each generated model with a unique name. The

suffix increments with each successive test bench generation for a given model.
For example, if the original model name is test, then the sequence of generated
cosimulation model names is gm_test_toolid_0, gm_test_toolid_1, and so on.

The naming convention for generated cosimulation scripts is the same as that for models,
except that the file name extension is .m.

Limitations for Cosimulation Model Generation

When you configure a model for cosimulation model generation, observe the following
limitations:

• Explicitly specify the sample times of source blocks to the DUT in the simulation
path. Use of the default sample time (-1) in the source blocks may cause sample time
propagation problems in the cosimulation path of the generated model.

• The HDL Coder software does not support continuous sample times for cosimulation
model generation. Do not use sample times 0 or Inf in source blocks in the simulation
path.

• Combinatorial output paths (caused by absence of registers in the generated code)
have a latency of one extra cycle in cosimulation. This causes a one cycle discrepancy
in the comparison between the simulation and cosimulation outputs. To avoid
this discrepancy, the Enable direct feedthrough for HDL design with pure
combinational datapath option on the Ports pane of the HDL Cosimulation block
is automatically selected..

Alternatively, you can avoid the latency by specifying output pipelining (see
“OutputPipeline”). This will fully register outputs during code generation.

17 Interfacing Subsystems and Models to HDL Code

17-52

• Double data types are not supported for the HDL Cosimulation block. Avoid use
of double data types in the simulation path when generating HDL code and a
cosimulation model.

 Customize Black Box or HDL Cosimulation Interface

17-53

Customize Black Box or HDL Cosimulation Interface

You can customize port names and set attributes of the external component when you
generate an interface from the following blocks:

• Model with black box implementation
• Subsystem with black box implementation
• HDL Cosimulation

In this section...

“Interface Parameters” on page 17-53
“Specify Bidirectional Ports” on page 17-55

Interface Parameters

Open the HDL Block Properties dialog box to see the interface generation parameters.

The following table summarizes the names, value settings, and purpose of the interface
generation parameters.

Parameter Name Values Description

AddClockEnablePort on | off

Default: on

If on, add a clock enable
input port to the interface
generated for the block. The
name of the port is specified by
ClockEnableInputPort.

AddClockPort on | off

Default: on

If on, add a clock input port to the
interface generated for the block.
The name of the port is specified by
ClockInputPort.

AddResetPort on | off

Default: on

If on, add a reset input port to the
interface generated for the block.
The name of the port is specified by
ResetInputPort.

AllowDistributedPipelining on | off

Default: off

If on, allow HDL Coder to move
registers across the block, from
input to output or output to input.

17 Interfacing Subsystems and Models to HDL Code

17-54

Parameter Name Values Description

ClockEnableInputPort Default: clk_enable Specifies HDL name for block's clock
enable input port.

ClockInputPort Default: clk Specifies HDL name for block's clock
input signal.

EntityName Default: Entity name string
is derived from the block
name, and modified when
necessary to generate a legal
VHDL entity name.

Specifies VHDL entity or Verilog
module name generated for the
block.

GenericList Default: An empty cell array
of string data.

Each element of the cell
array is another cell array
of the form {'Name',
'Value', 'Type'}, where
'Type' is optional. If you
omit 'Type', 'integer' is
passed as the data type.

Specifies a list of parameter/value
pairs (with optional data type
specification) in string format
to pass to a subsystem with a
BlackBox implementation.

ImplementationLatency -1 | 0 | positive integer

Default: -1

Specifies the additional latency of
the external component in time
steps, relative to the Simulink block.

If 0 or greater, this value is used for
delay balancing. Your inputs and
outputs must operate at the same
rate.

If -1, latency is unknown. This
disables delay balancing.

InlineConfigurations
(VHDL only)

on | off

Default: If this parameter
is unspecified, defaults
to the value of the global
InlineConfigurations

property.

If off, suppress generation of a
configuration for the block, and
require a user-supplied external
configuration.

 Customize Black Box or HDL Cosimulation Interface

17-55

Parameter Name Values Description

InputPipeline Default: 0 Specifies the number of input
pipeline stages (pipeline depth) in
the generated code.

OutputPipeline Default: 0 Specifies the number of output
pipeline stages (pipeline depth) in
the generated code.

ResetInputPort Default: reset Specifies HDL name for block's reset
input.

VHDLArchitectureName
(VHDL only)

Default: rtl Specifies RTL architecture name
generated for the block. The
architecture name is generated only
if InlineConfigurations is on.

VHDLComponentLibrary
(VHDL only)

Default: work Specifies the library from which to
load the VHDL component.

Specify Bidirectional Ports

You can specify bidirectional ports for Subsystem blocks with black box implementation.
In the generated code, the bidirectional ports have the Verilog or VHDL inout keyword.

In the FPGA Turnkey workflow, you can use the bidirectional ports to connect to external
RAM.

• “Requirements” on page 17-55
• “How To Specify a Bidirectional Port” on page 17-55
• “Limitations” on page 17-56

Requirements

• The bidirectional port must be a black box subsystem port.
• There must be no logic between the bidirectional port and the corresponding top-level

DUT subsystem port. Otherwise, the generated code does not compile.

How To Specify a Bidirectional Port

To specify a bidirectional port using the UI:

17 Interfacing Subsystems and Models to HDL Code

17-56

1 In the black box Subsystem, right-click the Inport or Outport block that represents
the bidirectional port. Select HDL Code > HDL Block Properties.

2 For BidirectionalPort, select on.

To specify a bidirectional port at the command line, set the BidirectionalPort
property to 'on' using hdlset_param or makehdl.

For example, suppose you have a model, my_model, that contains a DUT
subsystem, dut_subsys, and the DUT subsystem contains a black box subsystem,
blackbox_subsys. If blackbox_subsys has an Inport, input_A, specify input_A as
bidirectional by entering:

hdlset_param('mymodel/dut_subsys/blackbox_subsys/input_A','BidirectionalPort','on');

Limitations

• In the FPGA Turnkey workflow, in the Target platform interfaces table, you must
map a bidirectional port to either Specify FPGA Pin {’LSB’,...,’MSB’} or one
of the other interfaces where the interface bitwidth exactly matches your bidirectional
port bitwidth.

For example, you can map a 32-bit bidirectional port to the Expansion Headers J6
Pin 2-64[0:31] interface.

• You cannot generate a Verilog test bench if there is a bidirectional port within your
DUT subsystem.

• Simulink does not support bidirectional ports, so you cannot simulate the
bidirectional behavior in Simulink.

 Pass-Through and No-Op Implementations

17-57

Pass-Through and No-Op Implementations

HDL Coder provides a pass-through or no-op implementation for some blocks. A pass-
through implementation generates a wire in the HDL; a no-op implementation omits
code generation for the block or subsystem. These implementations are useful in cases
where you need a block for simulation, but do not need the block or subsystem in your
generated HDL code.

The pass-through and no-op implementations are summarized in the following table.

Implementation Description

Pass-through implementations Provides a pass-through implementation in which
the block's inputs are passed directly to its outputs.
HDL Coder supports the following blocks with a pass-
through implementation:

• Convert 1-D to 2-D
• Reshape
• Signal Conversion
• Signal Specification

No HDL This implementation completely removes the block
from the generated code. This enables you to use the
block in simulation but treat it as a “no-op” in the
HDL code. This implementation is used for many
blocks (such as Scopes and Assertions) that are
significant in simulation but are meaningless in HDL
code.

17-58

18

Stateflow HDL Code Generation
Support

• “Introduction to Stateflow HDL Code Generation” on page 18-2
• “Hardware Realization of Stateflow Semantics” on page 18-3
• “Generate HDL for Mealy and Moore Finite State Machines” on page 18-4
• “Design Patterns Using Advanced Chart Features” on page 18-13

18 Stateflow HDL Code Generation Support

18-2

Introduction to Stateflow HDL Code Generation

In this section...

“Overview” on page 18-2
“Example” on page 18-2

Overview

Stateflow charts provide concise descriptions of complex system behavior using
hierarchical finite state machine (FSM) theory, flow diagram notation, and state-
transition diagrams.

You use a chart to model a finite state machine or a complex control algorithm intended
for realization as an ASIC or FPGA. When the model meets design requirements, you
then generate HDL code (VHDL or Verilog) that implements the design embodied in the
model. You can simulate and synthesize generated HDL code using industry standard
tools, and then map your system designs into FPGAs and ASICs.

In general, generation of VHDL or Verilog code from a model containing a chart does not
differ greatly from HDL code generation from other models. The HDL code generator is
designed to

• Support the largest possible subset of chart semantics that is consistent with
HDL. This broad subset lets you generate HDL code from existing models without
significant remodeling effort.

• Generate bit-true, cycle-accurate HDL code that is fully compatible with Stateflow
simulation semantics.

Example

The Pipelined Configurable FIR example illustrates HDL code generation from a
subsystem that includes Stateflow charts.

To view the example, open the HDL Coder documentation, click Examples, and open the
Pipelined Configurable FIR example.

 Hardware Realization of Stateflow Semantics

18-3

Hardware Realization of Stateflow Semantics

A mapping from Stateflow semantics to an HDL implementation has the following
requirements:

• Requirement 1: Hardware designs require separability of output and state update
functions.

• Requirement 2: HDL is a concurrent language. To achieve the goal of bit-true
simulation, execution must be in order.

To meet Requirement 1, an FSM is coded in HDL as two concurrent blocks that execute
under different conditions. One block evaluates the transition conditions, computes
outputs and computes the next state variables. The other block updates the current state
variables from the available next state and performs the actual state transitions. This
second block is activated only on the trigger edge of the clock signal, or an asynchronous
reset signal.

Stateflow sequential semantics map to HDL sequential statements, and local chart
variables in function scope map to VHDL variables in process scope. In VHDL, variable
assignment is sequential. Therefore, statements in a Stateflow function that uses local
variables can map to statements in a VHDL process that uses corresponding variables.
The VHDL assignments execute in the same order as the assignments in the Stateflow
function.

18 Stateflow HDL Code Generation Support

18-4

Generate HDL for Mealy and Moore Finite State Machines

In this section...

“Overview” on page 18-4
“Generating HDL for a Mealy Finite State Machine” on page 18-5
“Generating HDL Code for a Moore Finite State Machine” on page 18-9

Overview

Stateflow charts support modeling of three types of state machines:

• Classic (default)
• Mealy
• Moore

This section discusses issues you should consider when generating HDL code for Mealy
and Moore state machines.

Mealy and Moore state machines differ in the following ways:

• The outputs of a Mealy state machine are a function of the current state and inputs.
• The outputs of a Moore state machine are a function of the current state only.

Moore and Mealy charts can be functionally equivalent; an equivalent Mealy chart
can derive from a Moore chart, and vice versa. A Mealy state machine has a richer
description and usually requires a smaller number of states.

The principal advantages of using Mealy or Moore charts as an alternative to Classic
charts are:

• At compile time, Mealy and Moore charts are validated for conformance to their
formal definitions and semantic rules, and violations are reported.

• Moore charts generate more efficient code than Classic charts, for both C and HDL
targets.

The execution of a Mealy or Moore chart at time t is the evaluation of the function
represented by that chart at time t. The initialization property for output defines every

 Generate HDL for Mealy and Moore Finite State Machines

18-5

output at every time step. Specifically, the output of a Mealy or Moore chart at one time
step must not depend on the output of the chart at an earlier time step.

Consider the outputs of a chart. Stateflow charts permit output latching. That is, the
value of an output computed at time t persists until time t+d, when it is overwritten.
The output latching feature corresponds to registered outputs. Therefore, Mealy and
Moore charts intended for HDL code generation should not use registered outputs.

Generating HDL for a Mealy Finite State Machine

When generating HDL code for a chart that models a Mealy state machine, make sure
that:

• The chart meets the general code generation requirements, as described in
“Restrictions”.

• Actions are associated with inner and outer transitions only.

In addition, for better synthesis results and more readable HDL code, we recommend
selecting the chart property Initialize Outputs Every Time Chart Wakes Up, as
shown in the following figure.

18 Stateflow HDL Code Generation Support

18-6

Mealy actions are associated with transitions. In Mealy machines, output computation is
expected to be driven by the change on inputs. In fact, the dependence of output on input
is the fundamental distinguishing factor between the formal definitions of Mealy and
Moore machines. The requirement that actions be given on transitions is to some degree
stylistic, rather than required, to enforce Mealy semantics. However, it is natural that

 Generate HDL for Mealy and Moore Finite State Machines

18-7

output computation follows input conditions on input, because transition conditions are
primarily input conditions in any machine type.

The following figure shows an example of a chart that models a Mealy state machine.

The following code example lists the Verilog code generated for the Mealy chart.
 always @(posedge clk or posedge reset)

 begin : MealyChart_1_process

 if (reset == 1'b1) begin

 is_MealyChart <= IN_s0;

 end

 else begin

 if (enb) begin

 is_MealyChart <= is_MealyChart_next;

 end

 end

 end

 always @* begin

 is_MealyChart_next = is_MealyChart;

 seqFound_1 = 1'b0;

 state_1 = 0.0;

 case (is_MealyChart)

 IN_s0 :

 begin

 if (u_double == 1.0) begin

 state_1 = 1.0;

 is_MealyChart_next = IN_s1;

 end

 end

18 Stateflow HDL Code Generation Support

18-8

 IN_s1 :

 begin

 if (u_double == 2.0) begin

 state_1 = 2.0;

 is_MealyChart_next = IN_s12;

 end

 else if (u_double != 1.0) begin

 state_1 = 0.0;

 is_MealyChart_next = IN_s0;

 end

 end

 IN_s12 :

 begin

 if (u_double == 1.0) begin

 state_1 = 3.0;

 is_MealyChart_next = IN_s121;

 end

 else begin

 state_1 = 0.0;

 is_MealyChart_next = IN_s0;

 end

 end

 IN_s121 :

 begin

 if (u_double == 1.0) begin

 state_1 = 1.0;

 is_MealyChart_next = IN_s1;

 end

 else if (u_double == 3.0) begin

 state_1 = 4.0;

 seqFound_1 = 1'b1;

 is_MealyChart_next = IN_s1213;

 end

 else if (u_double == 2.0) begin

 state_1 = 2.0;

 is_MealyChart_next = IN_s12;

 end

 else begin

 state_1 = 0.0;

 is_MealyChart_next = IN_s0;

 end

 end

 default :

 begin

 if (u_double == 1.0) begin

 state_1 = 1.0;

 seqFound_1 = 1'b0;

 is_MealyChart_next = IN_s1;

 end

 else begin

 state_1 = 0.0;

 seqFound_1 = 1'b0;

 is_MealyChart_next = IN_s0;

 end

 end

 endcase

 end

 Generate HDL for Mealy and Moore Finite State Machines

18-9

Generating HDL Code for a Moore Finite State Machine

When generating HDL code for a chart that models a Moore state machine, make sure
that:

• The chart meets the general code generation requirements, as described in
“Restrictions”.

• Actions occur in states only. These actions are unlabeled, and execute when exiting
the states or remaining in the states.

Moore actions must be associated with states, because output computation must be
dependent only on states, not input. Therefore, the current configuration of active
states at time step t determines output. Thus, the single action in a Moore state
serves as both during and exit action. If state S is active when a chart wakes up at
time t, it contributes to the output whether it remains active into time t+1 or not.

• Local data and graphical functions are not used.

Function calls and local data are not allowed in a Moore chart. This prevents output
from depending on input in ways that would be difficult for the HDL code generator
to verify. These restrictions strongly encourage coding practices that separate output
and input.

• No references to input occur outside of transition conditions.
• Output computation occurs only in leaf states.

The chart's top-down semantics compute outputs as if actions were evaluated strictly
before inner and outer flow diagrams.

In addition, for better synthesis results and more readable HDL code, we recommend
selecting the chart property Initialize Outputs Every Time Chart Wakes Up, as
shown in the following figure.

18 Stateflow HDL Code Generation Support

18-10

The following figure shows a Stateflow chart of a Moore state machine.

 Generate HDL for Mealy and Moore Finite State Machines

18-11

The following code example illustrates generated VHDL code for the Moore chart.

 MooreChart_1_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 is_MooreChart <= IN_s0;

 ELSIF clk'EVENT AND clk = '1' THEN

 IF enb = '1' THEN

 is_MooreChart <= is_MooreChart_next;

 END IF;

 END IF;

 END PROCESS MooreChart_1_process;

 MooreChart_1_output : PROCESS (is_MooreChart, u)

 BEGIN

 is_MooreChart_next <= is_MooreChart;

 seqFound <= '0';

 state <= 0.0;

 CASE is_MooreChart IS

 WHEN IN_s0 =>

 state <= 0.0;

 seqFound <= '0';

 WHEN IN_s1 =>

 state <= 1.0;

 seqFound <= '0';

 WHEN IN_s12 =>

 state <= 2.0;

 WHEN IN_s121 =>

 state <= 3.0;

 WHEN OTHERS =>

18 Stateflow HDL Code Generation Support

18-12

 state <= 4.0;

 seqFound <= '1';

 END CASE;

 CASE is_MooreChart IS

 WHEN IN_s0 =>

 IF u = 1.0 THEN

 is_MooreChart_next <= IN_s1;

 END IF;

 WHEN IN_s1 =>

 IF u = 2.0 THEN

 is_MooreChart_next <= IN_s12;

 ELSIF u /= 1.0 THEN

 is_MooreChart_next <= IN_s0;

 END IF;

 WHEN IN_s12 =>

 IF u = 1.0 THEN

 is_MooreChart_next <= IN_s121;

 ELSE

 is_MooreChart_next <= IN_s0;

 END IF;

 WHEN IN_s121 =>

 IF u = 1.0 THEN

 is_MooreChart_next <= IN_s1;

 ELSIF u = 3.0 THEN

 is_MooreChart_next <= IN_s1213;

 ELSIF u = 2.0 THEN

 is_MooreChart_next <= IN_s12;

 ELSE

 is_MooreChart_next <= IN_s0;

 END IF;

 WHEN OTHERS =>

 IF u = 1.0 THEN

 is_MooreChart_next <= IN_s1;

 ELSE

 is_MooreChart_next <= IN_s0;

 END IF;

 END CASE;

 END PROCESS MooreChart_1_output;

 Design Patterns Using Advanced Chart Features

18-13

Design Patterns Using Advanced Chart Features

In this section...

“Temporal Logic” on page 18-13
“Graphical Function” on page 18-15
“Hierarchy and Parallelism” on page 18-17
“Stateless Charts” on page 18-17
“Truth Tables” on page 18-19

Temporal Logic

Stateflow temporal logic operators (such as after, before, or every) are Boolean
operators that operate on recurrence counts of Stateflow events. Temporal logic operators
can appear only in conditions on transitions that originate from states, and in state
actions. Although temporal logic does not introduce new events into a Stateflow model, it
is useful to think of the change of value of a temporal logic condition as an event. You can
use temporal logic operators in many cases where a counter is required. A common use
case would be to use temporal logic to implement a time-out counter.

Note: Absolute-time temporal logic is not supported for HDL code generation.

For detailed information about temporal logic, see “ Control Chart Execution Using
Temporal Logic”.

The chart shown in the following figure uses temporal logic in a design for a debouncer.
Instead of instantaneously switching between on and off states, the chart uses two
intermediate states and temporal logic to ignore transients. The transition is committed
based on a time-out.

18 Stateflow HDL Code Generation Support

18-14

The following code excerpt shows VHDL code generated from this chart.
Chart_1_output : PROCESS (is_Chart, u, temporalCounter_i1, y_reg)

 VARIABLE temporalCounter_i1_temp : unsigned(7 DOWNTO 0);

 BEGIN

 temporalCounter_i1_temp := temporalCounter_i1;

 is_Chart_next <= is_Chart;

 y_reg_next <= y_reg;

 IF temporalCounter_i1 < 7 THEN

 temporalCounter_i1_temp := temporalCounter_i1 + 1;

 END IF;

 CASE is_Chart IS

 WHEN IN_tran1 =>

 IF u = 1.0 THEN

 is_Chart_next <= IN_on;

 y_reg_next <= 1.0;

 ELSIF temporalCounter_i1_temp >= 3 THEN

 is_Chart_next <= IN_off;

 y_reg_next <= 0.0;

 END IF;

 WHEN IN_tran2 =>

 IF temporalCounter_i1_temp >= 5 THEN

 is_Chart_next <= IN_on;

 y_reg_next <= 1.0;

 Design Patterns Using Advanced Chart Features

18-15

 ELSIF u = 0.0 THEN

 is_Chart_next <= IN_off;

 y_reg_next <= 0.0;

 END IF;

 WHEN IN_off =>

 IF u = 1.0 THEN

 is_Chart_next <= IN_tran2;

 temporalCounter_i1_temp := to_unsigned(0, 8);

 END IF;

 WHEN OTHERS =>

 IF u = 0.0 THEN

 is_Chart_next <= IN_tran1;

 temporalCounter_i1_temp := to_unsigned(0, 8);

 END IF;

 END CASE;

 temporalCounter_i1_next <= temporalCounter_i1_temp;

 END PROCESS Chart_1_output;

Graphical Function

A graphical function is a function defined graphically by a flow diagram. Graphical
functions reside in a chart along with the diagrams that invoke them. Like MATLAB
functions and C functions, graphical functions can accept arguments and return results.
Graphical functions can be invoked in transition and state actions.

The following figure shows a graphical function that implements a 64–by–64 counter.

18 Stateflow HDL Code Generation Support

18-16

The following code excerpt shows VHDL code generated for this graphical function.
 x64_counter_sf : PROCESS (x, y, outx_reg, outy_reg)

 -- local variables

 VARIABLE x_temp : unsigned(7 DOWNTO 0);

 VARIABLE y_temp : unsigned(7 DOWNTO 0);

 BEGIN

 outx_reg_next <= outx_reg;

 outy_reg_next <= outy_reg;

 x_temp := x;

 y_temp := y;

 x_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(x_temp, 9), 10)

 + tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

 IF x_temp < to_unsigned(64, 8) THEN

 NULL;

 ELSE

 x_temp := to_unsigned(0, 8);

 y_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(y_temp, 9), 10)

 + tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

 IF y_temp < to_unsigned(64, 8) THEN

 NULL;

 ELSE

 Design Patterns Using Advanced Chart Features

18-17

 y_temp := to_unsigned(0, 8);

 END IF;

 END IF;

 outx_reg_next <= x_temp;

 outy_reg_next <= y_temp;

 x_next <= x_temp;

 y_next <= y_temp;

 END PROCESS x64_counter_sf;

Hierarchy and Parallelism

Stateflow charts support both hierarchy (states containing other states) and parallelism
(multiple states that can be active simultaneously).

In Stateflow semantics, parallelism is not synonymous with concurrency. Parallel states
can be active simultaneously, but they are executed sequentially according to their
execution order. (Execution order is displayed on the upper right corner of a parallel
state).

For detailed information on hierarchy and parallelism, see “Stateflow Hierarchy of
Objects” and “Execution Order for Parallel States”.

For HDL code generation, an entire chart maps to a single output computation process.
Within the output computation process:

• The execution of parallel states proceeds sequentially.
• Nested hierarchical states map to nested CASE statements in the generated HDL

code.

Stateless Charts

Charts consisting of pure flow diagrams (i.e., charts without states) are useful in
capturing if-then-else constructs used in procedural languages like C.

As an example, consider the following logic, expressed in C-like pseudocode.

if(U1==1) {

 if(U2==1) {

 Y = 1;

 }else{

 Y = 2;

18 Stateflow HDL Code Generation Support

18-18

 }

}else{

 if(U2<2) {

 Y = 3;

 }else{

 Y = 4;

 }

 }

The following figure shows the flow diagram that implements the if-then-else logic.

The following generated VHDL code excerpt shows the nested IF-ELSE statements
obtained from the flow diagram.

Chart : PROCESS (Y1_reg, Y2_reg, U1, U2)

 -- local variables

 BEGIN

 Y1_reg_next <= Y1_reg;

 Y2_reg_next <= Y2_reg;

 IF unsigned(U1) = to_unsigned(1, 8) THEN

 IF unsigned(U2) = to_unsigned(1, 8) THEN

 Y1_reg_next <= to_unsigned(1, 8);

 ELSE

 Y1_reg_next <= to_unsigned(2, 8);

 Design Patterns Using Advanced Chart Features

18-19

 END IF;

 ELSIF unsigned(U2) < to_unsigned(2, 8) THEN

 Y1_reg_next <= to_unsigned(3, 8);

 ELSE

 Y1_reg_next <= to_unsigned(4, 8);

 END IF;

 Y2_reg_next <= tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(unsigned(U1), 9),10)

 + tmw_to_unsigned(tmw_to_unsigned(unsigned(U2), 9), 10), 8);

 END PROCESS Chart;

Truth Tables

HDL Coder supports HDL code generation for:

• Truth Table functions within a Stateflow chart
• Truth Table blocks in Simulink models

This section examines a Truth Table function in a chart, and the VHDL code generated
for the chart.

Truth Tables are well-suited for implementing compact combinatorial logic. A typical
application for Truth Tables is to implement nonlinear quantization or threshold logic.
Consider the following logic:

Y = 1 when 0 <= U <= 10

Y = 2 when 10 < U <= 17

Y = 3 when 17 < U <= 45

Y = 4 when 45 < U <= 52

Y = 5 when 52 < U

A stateless chart with a single call to a Truth Table function can represent this logic
succinctly.

The following figure shows the quantizer chart, containing the Truth Table.

18 Stateflow HDL Code Generation Support

18-20

The following figure shows the threshold logic, as displayed in the Truth Table Editor.

 Design Patterns Using Advanced Chart Features

18-21

18 Stateflow HDL Code Generation Support

18-22

The following code excerpt shows VHDL code generated for the quantizer chart.

 quantizer : PROCESS (Y_reg, U)

 -- local variables

 VARIABLE aVarTruthTableCondition_1 : std_logic;

 VARIABLE aVarTruthTableCondition_2 : std_logic;

 VARIABLE aVarTruthTableCondition_3 : std_logic;

 VARIABLE aVarTruthTableCondition_4 : std_logic;

 BEGIN

 Y_reg_next <= Y_reg;

 -- Condition #1

 aVarTruthTableCondition_1 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(10, 8));

 -- Condition #2

 aVarTruthTableCondition_2 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(17, 8));

 -- Condition #3

 aVarTruthTableCondition_3 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(45, 8));

 -- Condition #4

 aVarTruthTableCondition_4 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(52, 8));

 IF tmw_to_boolean(aVarTruthTableCondition_1) THEN

 -- D1

 -- Action 1

 Y_reg_next <= to_unsigned(1, 8);

 ELSIF tmw_to_boolean(aVarTruthTableCondition_2) THEN

 -- D2

 -- Action 2

 Y_reg_next <= to_unsigned(2, 8);

 ELSIF tmw_to_boolean(aVarTruthTableCondition_3) THEN

 -- D3

 -- Action 3

 Y_reg_next <= to_unsigned(3, 8);

 ELSIF tmw_to_boolean(aVarTruthTableCondition_4) THEN

 -- D4

 -- Action 4

 Y_reg_next <= to_unsigned(4, 8);

 ELSE

 -- Default

 -- Action 5

 Y_reg_next <= to_unsigned(5, 8);

 END IF;

 END PROCESS quantizer;

Note: When generating code for a Truth Table block in a Simulink model, HDL Coder
writes a separate entity/architecture file for the Truth Table code. The file is named
Truth_Table.vhd (for VHDL) or Truth_Table.v (for Verilog).

19

Generating HDL Code with the
MATLAB Function Block

• “HDL Applications for the MATLAB Function Block” on page 19-2
• “Viterbi Decoder with the MATLAB Function Block” on page 19-3
• “Code Generation from a MATLAB Function Block” on page 19-4
• “Generate Instantiable Code for Functions” on page 19-22
• “MATLAB Function Block Design Patterns for HDL” on page 19-24
• “Design Guidelines for the MATLAB Function Block” on page 19-35
• “Distributed Pipeline Insertion for MATLAB Function Blocks” on page 19-41

19 Generating HDL Code with the MATLAB Function Block

19-2

HDL Applications for the MATLAB Function Block

The MATLAB Function block contains a MATLAB function in a model. The function's
inputs and outputs are represented by ports on the block, which allow you to interface
your model to the function code. When you generate HDL code for a MATLAB Function
block, the HDL Coder software generates two main HDL code files:

• A file containing entity and architecture code that implement the actual algorithm or
computations generated for the MATLAB Function block.

• A file containing an entity definition and RTL architecture that provide a black box
interface to the algorithmic code generated for the MATLAB Function block.

The structure of these code files is analogous to the structure of the model, in which
a subsystem provides an interface between the root model and the function in the
MATLAB Function block.

The MATLAB Function block supports a subset of the MATLAB language that is well-
suited to HDL implementation of various DSP and telecommunications algorithms, such
as:

• Sequence and pattern generators
• Encoders and decoders
• Interleavers and deinterleavers
• Modulators and demodulators
• Multipath channel models; impairment models
• Timing recovery algorithms
• Viterbi algorithm; Maximum Likelihood Sequence Estimation (MLSE)
• Adaptive equalizer algorithms

 Viterbi Decoder with the MATLAB Function Block

19-3

Viterbi Decoder with the MATLAB Function Block

hdlcoderviterbi2 models a Viterbi decoder, incorporating an MATLAB Function block
for use in simulation and HDL code generation. To open the model, type the following at
the MATLAB command prompt:

hdlcoderviterbi2

19 Generating HDL Code with the MATLAB Function Block

19-4

Code Generation from a MATLAB Function Block

In this section...

“Counter Model Using the MATLAB Function block” on page 19-4
“Setting Up” on page 19-6
“Creating the Model and Configuring General Model Settings” on page 19-7
“Adding a MATLAB Function Block to the Model” on page 19-8
“Set Fixed-Point Options for the MATLAB Function Block” on page 19-10
“Programming the MATLAB Function Block” on page 19-14
“Constructing and Connecting the DUT_eML_Block Subsystem” on page 19-15
“Compiling the Model and Displaying Port Data Types” on page 19-17
“Simulating the eml_hdl_incrementer_tut Model” on page 19-18
“Generating HDL Code” on page 19-19

Counter Model Using the MATLAB Function block

In this tutorial, you construct and configure a simple model,
eml_hdl_incrementer_tut, and then generate VHDL code from the model.
eml_hdl_incrementer_tut includes a MATLAB Function block that implements
a simple fixed-point counter function, incrementer. The incrementer function
is invoked once during each sample period of the model. The function maintains a
persistent variable count, which is either incremented or reinitialized to a preset value
(ctr_preset_val), depending on the value passed in to the ctr_preset input of the
MATLAB Function block. The function returns the counter value (counter) at the
output of the MATLAB Function block.

The MATLAB Function block resides in a subsystem, DUT_eML_Block. The subsystem
functions as the device under test (DUT) from which you generate HDL code.

 Code Generation from a MATLAB Function Block

19-5

The root-level model drives the subsystem and includes Display and To Workspace blocks
for use in simulation. (The Display and To Workspace blocks do not generate HDL code.)

Tip If you do not want to construct the model step by step, or do not have time, you can
open the completed model by entering the name at the command prompt:

eml_hdl_incrementer

19 Generating HDL Code with the MATLAB Function Block

19-6

After you open the model, save a copy of it to your local folder as
eml_hdl_incrementer_tut.

The Incrementer Function Code

The following code listing gives the complete incrementer function definition:

function counter = incrementer(ctr_preset, ctr_preset_val)

% The function incrementer implements a preset counter that counts

% how many times this block is called.

%

% This example function shows how to model memory with persistent variables,

% using fimath settings suitable for HDL. It also demonstrates MATLAB

% operators and other language features that HDL Coder supports

% for code generation from Embedded MATLAB Function block.

%

% On the first call, the result 'counter' is initialized to zero.

% The result 'counter' saturates if called more than 2^14-1 times.

% If the input ctr_preset receives a nonzero value, the counter is

% set to a preset value passed in to the ctr_preset_val input.

persistent current_count;

if isempty(current_count)

 % zero the counter on first call only

 current_count = uint32(0);

end

counter = getfi(current_count);

if ctr_preset

 % set counter to preset value if input preset signal is nonzero

 counter = ctr_preset_val;

else

 % otherwise count up

 inc = counter + getfi(1);

 counter = getfi(inc);

end

% store counter value for next iteration

current_count = uint32(counter);

function hdl_fi = getfi(val)

nt = numerictype(0,14,0);

fm = hdlfimath;

hdl_fi = fi(val, nt, fm);

Setting Up

Before you begin building the example model, set up a working folder for your model and
generated code.

 Code Generation from a MATLAB Function Block

19-7

Setting Up a folder

1 Start MATLAB.
2 Create a folder named eml_tut, for example:

mkdir D:\work\eml_tut

The eml_tut folder stores the model you create, and also contains subfolders and
generated code. The location of the folder does not matter, except that it should not
be within the MATLAB tree.

3 Make the eml_tut folder your working folder, for example:

cd D:\work\eml_tut

Creating the Model and Configuring General Model Settings

In this section, you create a model and set some parameters to values recommended
for HDL code generation hdlsetup.m command. The hdlsetup command uses the
set_param function to set up models for HDL code generation quickly and consistently.
See “Initializing Model Parameters with hdlsetup” for further information about
hdlsetup.

To set the model parameters:

1 Create a new model.
2 Save the model as eml_hdl_incrementer_tut.
3 At the MATLAB command prompt, type:

hdlsetup('eml_hdl_incrementer_tut');

4 Open the Configuration Parameters dialog box.
5 Set the following Solver options, which are useful in simulating this model:

• Fixed step size: 1
• Stop time: 5

6 Click OK to save your changes and close the Configuration Parameters dialog box.
7 Save your model.

19 Generating HDL Code with the MATLAB Function Block

19-8

Adding a MATLAB Function Block to the Model

1 Open the Simulink Library Browser. Then, select the Simulink/User-Defined
Functions library.

2 Select the MATLAB Function block from the library window and add it to the model.

3 Change the block label from MATLAB Function to eml_inc_block.

 Code Generation from a MATLAB Function Block

19-9

4 Save the model.
5 Close the Simulink Library Browser.

19 Generating HDL Code with the MATLAB Function Block

19-10

Set Fixed-Point Options for the MATLAB Function Block

This section describes how to set up the fimath specification and other fixed-point
options that are recommended for efficient HDL code generation from the MATLAB
Function block. The recommended settings are:

• ProductMode property of the fimath specification: 'FullPrecision'
• SumMode property of the fimath specification: 'FullPrecision'
• Treat these inherited signal types as fi objects option: Fixed-point (This is the

default setting.)

Configure the options as follows:

1 Open the eml_hdl_incrementer_tut model that you created in “Adding a
MATLAB Function Block to the Model” on page 19-8.

2 Double-click the MATLAB Function block to open it for editing. The MATLAB
Function Block Editor appears.

3 Click Edit Data. The Ports and Data Manager dialog box opens, displaying the
default fimath specification and other properties for the MATLAB Function block.

 Code Generation from a MATLAB Function Block

19-11

4 Select Specify Other. Selecting this option enables the MATLAB Function block
fimath text entry field.

19 Generating HDL Code with the MATLAB Function Block

19-12

5 The hdlfimath function is a utility that defines a FIMATH specification that is
optimized for HDL code generation. Replace the default MATLAB Function block
fimath specification with a call to hdlfimath as follows:

hdlfimath;

6 Click Apply. The MATLAB Function block properties should now appear as shown
in the following figure.

 Code Generation from a MATLAB Function Block

19-13

7 Close the Ports and Data Manager.
8 Save the model.

19 Generating HDL Code with the MATLAB Function Block

19-14

Programming the MATLAB Function Block

The next step is add code to the MATLAB Function block to define the incrementer
function, and then use diagnostics to check for errors.

1 Open the eml_hdl_incrementer_tut model that you created in “Adding a
MATLAB Function Block to the Model” on page 19-8.

2 Double-click the MATLAB Function block to open it for editing.
3 In the MATLAB Function Block Editor, delete the default code.
4 Copy the complete incrementer function definition from the listing given in “The

Incrementer Function Code” on page 19-6, and paste it into the editor.
5 Save the model. Doing so updates the model window, redrawing the MATLAB

Function block.

Changing the function header of the MATLAB Function block makes the following
changes to the block icon:

• The function name in the middle of the block changes to incrementer.
• The arguments ctr_preset and ctr_preset_val appear as input ports to the

block.
• The return value counter appears as an output port from the block.

6 Resize the block to make the port labels more legible.

 Code Generation from a MATLAB Function Block

19-15

7 Save the model again.

Constructing and Connecting the DUT_eML_Block Subsystem

This section assumes that you have completed “Programming the MATLAB Function
Block” on page 19-14 without encountering an error. In this section, you construct a
subsystem containing the incrementer function block, to be used as the device under
test (DUT) from which to generate HDL code. You then set the port data types and
connect the subsystem ports to the model.

Constructing the DUT_eML_Block Subsystem

Construct a subsystem containing the incrementer function block as follows:

1 Click the incrementer function block.
2 Select Diagram > Subsystem & Model Reference > Create Subsystem from

Selection.

A subsystem, labeled Subsystem, is created in the model window.
3 Change the Subsystem label to DUT_eML_Block.

Setting Port Data Types for the MATLAB Function Block

1 Double-click the subsystem to view its interior. As shown in the following figure, the
subsystem contains the incrementer function block, with input and output ports
connected.

19 Generating HDL Code with the MATLAB Function Block

19-16

2 Double-click the incrementer function block to open the MATLAB Function Block
Editor.

3 In the editor, click Edit Data to open the Ports and Data Manager.
4 Select the ctr_preset entry in the port list on the left. Click the button labeled >>

to display the Data Type Assistant. Set Mode for this port to Built in. Set Data
type to boolean. Click the button labeled << to close the Data Type Assistant. Click
Apply.

5 Select the ctr_preset_val entry in the port list on the left. Click the button
labeled >> to display the Data Type Assistant. Set Mode for this port to Fixed
point. Set Signedness to Unsigned. Set Word length to 14. Click the button
labeled << to close the Data Type Assistant. Click Apply.

6 Select the counter entry in the port list on the left. Click the button labeled >> to
display the Data Type Assistant. Verify that Mode for this port is set to Inherit:
Same as Simulink. Click the button labeled << to close the Data Type Assistant.
Click Apply.

7 Close the Ports and Data Manager dialog box and the MATLAB Function Block
Editor.

8 Save the model and close the DUT_eML_Block subsystem.

Connecting Subsystem Ports to the Model

Next, connect the ports of the DUT_eML_Block subsystem to the model as follows:

1 From the Sources library, add a Constant block to the model. Set the value of the
Constant block to 1, and the Output data type to boolean. Change the block label
to Preset.

2 Make a copy of the Preset Constant block. Set its value to 0, and change its block
label to Increment.

3 From the Signal Routing library, add a Manual Switch block to the model. Change
its label to Control. Connect its output to the In1 port of the DUT_eML_Block
subsystem.

4 Connect the Preset Constant block to the upper input of the Control switch block.
Connect the Increment Constant block to the lower input of the Control switch
block.

5 Add a third Constant block to the model. Set the value of the Constant to 15, and the
Output data type to Inherit via back propagation. Change the block label
to Preset Value.

 Code Generation from a MATLAB Function Block

19-17

6 Connect the Preset Value Constant block to the In2 port of the DUT_eML_Block
subsystem.

7 From the Sinks library, add a Display block to the model. Connect it to the Out1 port
of the DUT_eML_Block subsystem.

8 From the Sinks library, add a To Workspace block to the model. Route the output
signal from the DUT_eML_Block subsystem to the To Workspace block.

9 Save the model.

Checking the Function for Errors

Use the built-in diagnostics of MATLAB Function blocks to test for syntax errors:

1 Open the eml_hdl_incrementer_tut model.
2 Double-click the MATLAB Function block incrementer to open it for editing.
3 In the MATLAB Function Block Editor, select Build Model > Build to compile and

build the MATLAB Function block code.

The build process displays some progress messages. These messages include some
warnings, because the ports of the MATLAB Function block are not yet connected to
signals. You can ignore these warnings.

The build process builds an S-function for use in simulation. The build process includes
generation of C code for the S-function. The code generation messages you see during the
build process refer to generation of C code, not HDL code generation.

When the build concludes without encountering an error, a message window appears
indicating that parsing was successful. If errors are found, the Diagnostics Manager lists
them. See the MATLAB Function block documentation for information on debugging
MATLAB Function block build errors.

Compiling the Model and Displaying Port Data Types

In this section you enable the display of port data types and then compile the model.
Model compilation verifies the model structure and settings, and updates the model
display.

1 Select Display > Signals & Ports > Port Data Types.
2 Select Simulation > Update Diagram (or press Ctrl+D) to compile the model. This

triggers a rebuild of the code. After the model compiles, the block diagram updates to
show the port data types.

19 Generating HDL Code with the MATLAB Function Block

19-18

3 Save the model.

Simulating the eml_hdl_incrementer_tut Model

Start simulation. If required, the code rebuilds before the simulation starts.

After the simulation completes, the Display block shows the final output value returned
by the incrementer function block. For example, given a Start time of 0, a Stop time
of 5, and a zero value at the ctr_preset port, the simulation returns a value of 6:

 Code Generation from a MATLAB Function Block

19-19

You might want to experiment with the results of toggling the Control switch, changing
the Preset Value constant, and changing the total simulation time. You might also
want to examine the workspace variable simout, which is bound to the To Workspace
block.

Generating HDL Code

In this section, you select the DUT_eML_Block subsystem for HDL code generation, set
basic code generation options, and then generate VHDL code for the subsystem.

Selecting the Subsystem for Code Generation

Select the DUT_eML_Block subsystem for code generation:

1 Open the Configuration Parameters dialog box and click the HDL Code
Generation pane.

2 Select eml_hdl_incrementer_tut/DUT_eML_Block from the Generate HDL for
list.

3 Click OK.

19 Generating HDL Code with the MATLAB Function Block

19-20

Generating VHDL Code

The top-level HDL Code Generation options should now be set as follows:

• The Generate HDL for field specifies the eml_hdl_incrementer_tut/
DUT_eML_Block subsystem for code generation.

• The Language field specifies (by default) generation of VHDL code.
• The Folder field specifies (by default) that the code generation target folder is a

subfolder of your working folder, named hdlsrc.

Before generating code, select Current Folder from the Layout menu in the MATLAB
Command Window. This displays the Current Folder browser, which lets you easily
access your working folder and the files that are generated within it.

To generate code:

1 Click the Generate button.

HDL Coder compiles the model before generating code. Depending on model display
options (such as port data types), the appearance of the model might change after
code generation.

2 As code generation proceeds, the coder displays progress messages. The process
should complete with a message like the following:

HDL Code Generation Complete.

The names of generated VHDL files in the progress messages are hyperlinked. After
code generation completes, you can click these hyperlinks to view the files in the
MATLAB Editor.

3 A folder icon for the hdlsrc folder is now visible in the Current Folder browser. To
view generated code and script files, double-click the hdlsrc folder icon.

4 Observe that two VHDL files were generated. The structure of HDL code generated
for MATLAB Function blocks is similar to the structure of code generated for
Stateflow charts and Digital Filter blocks. The VHDL files that were generated in
the hdlsrc folder are:

• eml_inc_blk.vhd: VHDL code. This file contains entity and architecture code
implementing the actual computations generated for the MATLAB Function
block.

 Code Generation from a MATLAB Function Block

19-21

• DUT_eML_Block.vhd: VHDL code. This file contains an entity definition and
RTL architecture that provide a black box interface to the code generated in
eml_inc_blk.vhd.

The structure of these code files is analogous to the structure of the model, in which
the DUT_eML_Block subsystem provides an interface between the root model and
the incrementer function in the MATLAB Function block.

The other files generated in the hdlsrc folder are:

• DUT_eML_Block_compile.do: Mentor Graphics ModelSim compilation script
(vcom command) to compile the VHDL code in the two .vhd files.

• DUT_eML_Block_synplify.tcl: Synplify® synthesis script.
• DUT_eML_Block_map.txt: Mapping file. This report file maps generated

entities (or modules) to the subsystems that generated them (see “Trace Code
Using the Mapping File” on page 15-38).

5 To view the generated VHDL code in the MATLAB Editor, double-click the
DUT_eML_Block.vhd or eml_inc_blk.vhd file icons in the Current Folder
browser.

19 Generating HDL Code with the MATLAB Function Block

19-22

Generate Instantiable Code for Functions

In this section...

“How To Generate Instantiable Code for Functions” on page 19-22
“Generate Code Inline for Specific Functions” on page 19-23
“Limitations for Instantiable Code Generation for Functions” on page 19-23

For the MATLAB Function block, you can use the InstantiateFunctions parameter to
generate a VHDL entity or Verilog module for each function. HDL Coder generates
code for each entity or module in a separate file.

The InstantiateFunctions options for the MATLAB Function block are listed in the
following table.

InstantiateFunctions Setting Description

'off' (default) Generate code for functions inline.
'on' Generate a VHDL entity or Verilog

module for each function, and save each
module or entity in a separate file.

How To Generate Instantiable Code for Functions

To set the InstantiateFunctions parameter using the HDL Block Properties dialog box:

1 Right-click the MATLAB Function block.
2 Select HDL Code > HDL Block Properties.
3 For InstantiateFunctions, select on.

To set the InstantiateFunctions parameter from the command line, use
hdlset_param. For example, to generate instantiable code for functions in a MATLAB
Function block, myMatlabFcn, in your DUT subsystem, myDUT, enter:

hdlset_param('my_DUT/my_MATLABFcnBlk', 'InstantiateFunctions', 'on')

 Generate Instantiable Code for Functions

19-23

Generate Code Inline for Specific Functions

If you want to generate instantiable code for some functions but not others, enable
the option to generate instantiable code for functions, and use coder.inline. See
coder.inline for details.

Limitations for Instantiable Code Generation for Functions

The software generates code inline when:

• Function calls are within conditional code or for loops.
• Any function is called with a nonconstant struct input.
• The function has state, such as a persistent variable, and is called multiple times.
• There is an enumeration anywhere in the design function.

If you enable InstantiateFunctions, UseMatrixTypesInHDL has no effect.

19 Generating HDL Code with the MATLAB Function Block

19-24

MATLAB Function Block Design Patterns for HDL

In this section...

“The eml_hdl_design_patterns Library” on page 19-24
“Efficient Fixed-Point Algorithms” on page 19-26
“Model State Using Persistent Variables” on page 19-29
“Creating Intellectual Property with the MATLAB Function Block” on page 19-30
“Nontunable Parameter Arguments” on page 19-31
“Modeling Control Logic and Simple Finite State Machines” on page 19-31
“Modeling Counters” on page 19-32
“Modeling Hardware Elements” on page 19-33

The eml_hdl_design_patterns Library

The eml_hdl_design_patterns library is an extensive collection of examples
demonstrating useful applications of the MATLAB Function block in HDL code
generation.

MATLAB Function Block Design Patterns for HDL

19-25

To open the library, type the following command at the MATLAB prompt:

eml_hdl_design_patterns

You can use many blocks in the library as cookbook examples of various hardware
elements, as follows:

• Copy a block from the library to your model and use it as a computational unit.

19 Generating HDL Code with the MATLAB Function Block

19-26

• Copy the code from the block and use it as a local function in an existing MATLAB
Function block.

When you create custom blocks, you can control whether to inline or instantiate the HDL
code generated from MATLAB Function blocks. Use the Inline MATLAB Function
block code check box in the HDL Code Generation > Global Settings > Coding
style section of the Configuration Parameters dialog box. For more information, see
“Inline MATLAB Function block code”.

Efficient Fixed-Point Algorithms

The MATLAB Function block supports fixed point arithmetic using the Fixed-Point
Designer fi function. This function supports rounding and saturation modes that are
useful for coding algorithms that manipulate arbitrary word and fraction lengths. HDL
Coder supports all fi rounding and overflow modes.

HDL code generated from the MATLAB Function block is bit-true to MATLAB
semantics. Generated code uses bit manipulation and bit access operators (for example,
Slice, Extend, Reduce, Concat, etc.) that are native to VHDL and Verilog.

The following discussion shows how HDL code generated from the MATLAB Function
block follows cast-before-sum semantics, in which addition and subtraction operands are
cast to the result type before the addition or subtraction is performed.

Open the eml_hdl_design_patterns library and select the Combinatorics/
eml_expr block. eml_expr implements a simple expression containing addition,
subtraction, and multiplication operators with differing fixed point data types. The
generated HDL code shows the conversion of this expression with fixed point operands.
The MATLAB Function block uses the following code:

% fixpt arithmetic expression

expr = (a*b) - (a+b);

% cast the result to (sfix7_En4) output type

y = fi(expr, 1, 7, 4);

The default fimath specification for the block determines the behavior of arithmetic
expressions using fixed point operands inside the MATLAB Function block:

fimath(...

 'RoundMode', 'ceil',...

 'OverflowMode', 'saturate',...

MATLAB Function Block Design Patterns for HDL

19-27

 'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...

 'SumMode', 'FullPrecision', 'SumWordLength', 32,...

 'CastBeforeSum', true)

The data types of operands and output are as follows:

• a: (sfix5_En2)
• b: (sfix5_En3)
• y: (sfix7_En4).

Before HDL code generation, the operation

expr = (a*b) - (a+b);

is broken down internally into the following substeps:

1 tmul = a * b;

2 tadd = a + b;

3 tsub = tmul - tadd;

4 y = tsub;

Based on the fimath settings (see “Design Guidelines for the MATLAB Function Block”
on page 19-35) this expression is further broken down internally as follows:

• Based on the specified ProductMode, 'FullPrecision', the output type of tmul is
computed as (sfix10_En5).

• Since the CastBeforeSum property is set to 'true', substep 2 is broken down as
follows:

t1 = (sfix7_En3) a;

t2 = (sfix7_En3) b;

tadd = t1 + t2;

sfix7_En3 is the result sum type after aligning binary points and accounting for an
extra bit to account for possible overflow.

• Based on intermediate types of tmul (sfix10_En5) and tadd (sfix7_En3) the
result type of the subtraction in substep 3 is computed as sfix11_En5. Accordingly,
substep 3 is broken down as follows:

t3 = (sfix11_En5) tmul;

t4 = (sfix11_En5) tadd;

tsub = t3 - t4;

19 Generating HDL Code with the MATLAB Function Block

19-28

• Finally, the result is cast to a smaller type (sfix7_En4) leading to the following final
expression statements:

tmul = a * b;

t1 = (sfix7_En3) a;

t2 = (sfix7_En3) b;

tadd = t1 + t2;

t3 = (sfix11_En5) tmul;

t4 = (sfix11_En5) tadd;

tsub = t3 - t4;

y = (sfix7_En4) tsub;

The following listings show the generated VHDL and Verilog code from the eml_expr
block.

VHDL code excerpt:
 BEGIN

 --MATLAB Function 'Subsystem/eml_expr': '<S2>:1'

 -- fixpt arithmetic expression

 --'<S2>:1:4'

 mul_temp <= signed(a) * signed(b);

 sub_cast <= resize(mul_temp, 11);

 add_cast <= resize(signed(a & '0'), 7);

 add_cast_0 <= resize(signed(b), 7);

 add_temp <= add_cast + add_cast_0;

 sub_cast_0 <= resize(add_temp & '0' & '0', 11);

 expr <= sub_cast - sub_cast_0;

 -- cast the result to correct output type

 --'<S2>:1:7'

 y <= "0111111" WHEN ((expr(10) = '0') AND (expr(9 DOWNTO 7) /= "000"))

 OR ((expr(10) = '0') AND (expr(7 DOWNTO 1) = "0111111"))

 ELSE

 "1000000" WHEN (expr(10) = '1') AND (expr(9 DOWNTO 7) /= "111")

 ELSE

 std_logic_vector(expr(7 DOWNTO 1) + ("0" & expr(0)));

END fsm_SFHDL;

Verilog code excerpt:
//MATLAB Function 'Subsystem/eml_expr': '<S2>:1'

 // fixpt arithmetic expression

 //'<S2>:1:4'

 assign mul_temp = a * b;

 assign sub_cast = mul_temp;

 assign add_cast = {a[4], {a, 1'b0}};

 assign add_cast_0 = b;

 assign add_temp = add_cast + add_cast_0;

 assign sub_cast_0 = {{2{add_temp[6]}}, {add_temp, 2'b00}};

 assign expr = sub_cast - sub_cast_0;

 // cast the result to correct output type

 //'<S2>:1:7'

 assign y = (((expr[10] == 0) && (expr[9:7] != 0))

 || ((expr[10] == 0) && (expr[7:1] == 63)) ? 7'sb0111111 :

MATLAB Function Block Design Patterns for HDL

19-29

 ((expr[10] == 1) && (expr[9:7] != 7) ? 7'sb1000000 :

 expr[7:1] + $signed({1'b0, expr[0]})));

These code excerpts show that the generated HDL code from the MATLAB Function
block represents the bit-true behavior of fixed point arithmetic expressions using high
level HDL operators. The HDL code is generated using HDL coding rules like high level
bitselect and partselect replication operators and explicit sign extension and resize
operators.

Model State Using Persistent Variables

In the MATLAB Function block programming model, state-holding elements are
represented as persistent variables. A variable that is declared persistent retains its
value across function calls in software, and across sample time steps during simulation.

Please note that your MATLAB code must read the persistent variable before it is written
if you want HDL Coder to infer a register in the HDL code. The coder displays a warning
message if your code does not follow this rule.

The following example shows the unit delay block, which delays the input sample, u,
by one simulation time step. u is a fixed-point operand of type sfix6. u_d is a persistent
variable that holds the input sample.
function y = fcn(u)

persistent u_d;

if isempty(u_d)

 u_d = fi(-1, numerictype(u), fimath(u));

end

% return delayed input from last sample time hit

y = u_d;

% store the current input to be used later

u_d = u;

Because this code intends for u_d to infer a register during HDL code generation, u_d is
read in the assignment statement, y = u_d, before it is written in u_d = u.

HDL Coder generates the following HDL code for the unit delay block.
ENTITY Unit_Delay IS

 PORT (

 clk : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 u : IN std_logic_vector(15 DOWNTO 0);

 y : OUT std_logic_vector(15 DOWNTO 0));

END Unit_Delay;

19 Generating HDL Code with the MATLAB Function Block

19-30

ARCHITECTURE fsm_SFHDL OF Unit_Delay IS

BEGIN

 initialize_Unit_Delay : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 y <= std_logic_vector(to_signed(0, 16));

 ELSIF clk'EVENT AND clk = '1' THEN

 IF clk_enable = '1' THEN

 y <= u;

 END IF;

 END IF;

 END PROCESS initialize_Unit_Delay;

Initialization of persistent variables is moved into the master reset region in the
initialization process.

Refer to the Delays subsystem in the eml_hdl_design_patterns library to see
how vectors of persistent variables can be used to model integer delay, tap delay, and
tap delay vector blocks. These design patterns are useful in implementing sequential
algorithms that carry state between executions of the MATLAB Function block in a
model.

Creating Intellectual Property with the MATLAB Function Block

The MATLAB Function block helps you author intellectual property and create alternate
implementations of part of an algorithm. By using MATLAB Function blocks in this way,
you can guide the detailed operation of the HDL code generator even while writing high-
level algorithms.

For example, the subsystem Comparators in the eml_hdl_design_patterns library
includes several alternate algorithms for finding the minimum value of a vector. The
Comparators/eml_linear_min block finds the minimum of the vector in a linear
mode serially. The Comparators/eml_tree_min block compares the elements in a
tree structure. The tree implementation can achieve a higher clock frequency by adding
pipeline registers between the log2(N) stages. (See eml_hdl_design_patterns/
Filters for an example.)

Now consider replacing the simple comparison operation in the Comparators blocks
with an arithmetic operation (for example, addition, subtraction, or multiplication) where
intermediate results must be quantized. Using fimath rounding settings, you can fine
tune intermediate value computations before intermediate values feed into the next
stage. You can use this technique for tuning the generated hardware or customizing your
algorithm.

MATLAB Function Block Design Patterns for HDL

19-31

Nontunable Parameter Arguments

You can declare a nontunable parameter for a MATLAB Function block by setting its
Scope to Parameter in the Ports and Data Manager GUI, and clearing the Tunable
option.

A nontunable parameter does not appear as a signal port on the block. Parameter
arguments for MATLAB Function blocks take their values from parameters defined in
a parent Simulink masked subsystem or from variables defined in the MATLAB base
workspace, not from signals in the Simulink model.

Only nontunable parameters are supported for HDL code generation. If you declare
parameter arguments in MATLAB Function block code that is intended for HDL code
generation, be sure to clear the Tunable option for each such parameter argument.

Modeling Control Logic and Simple Finite State Machines

MATLAB Function block control constructs such as switch/case and if-elseif-
else, coupled with fixed point arithmetic operations let you model control logic quickly.

The FSMs/mealy_fsm_blk andFSMs/moore_fsm_blk blocks in the
eml_hdl_design_patterns library provide example implementations of Mealy and
Moore finite state machines in the MATLAB Function block.

The following listing implements a Moore state machine.

function Z = moore_fsm(A)

persistent moore_state_reg;

if isempty(moore_state_reg)

 moore_state_reg = fi(0, 0, 2, 0);

end

S1 = 0;

S2 = 1;

S3 = 2;

S4 = 3;

switch uint8(moore_state_reg)

 case S1,

 Z = true;

 if (~A)

 moore_state_reg(1) = S1;

 else

 moore_state_reg(1) = S2;

 end

 case S2,

19 Generating HDL Code with the MATLAB Function Block

19-32

 Z = false;

 if (~A)

 moore_state_reg(1) = S1;

 else

 moore_state_reg(1) = S2;

 end

 case S3,

 Z = false;

 if (~A)

 moore_state_reg(1) = S2;

 else

 moore_state_reg(1) = S3;

 end

 case S4,

 Z = true;

 if (~A)

 moore_state_reg(1) = S1;

 else

 moore_state_reg(1) = S3;

 end

 otherwise,

 Z = false;

end

In this example, a persistent variable (moore_state_reg) models state variables. The
output depends only on the state variables, thus modeling a Moore machine.

The FSMs/mealy_fsm_blk block in the eml_hdl_design_patterns library
implements a Mealy state machine. A Mealy state machine differs from a Moore state
machine in that the outputs depend on inputs as well as state variables.

The MATLAB Function block can quickly model simple state machines and other control-
based hardware algorithms (such as pattern matchers or synchronization-related
controllers) using control statements and persistent variables.

For modeling more complex and hierarchical state machines with complicated temporal
logic, use a Stateflow chart to model the state machine.

Modeling Counters

To implement arithmetic and control logic algorithms in MATLAB Function blocks
intended for HDL code generation, there are some simple HDL related coding
requirements:

• The top level MATLAB Function block must be called once per time step.
• It must be possible to fully unroll program loops.
• Persistent variables with reset values and update logic must be used to hold values

across simulation time steps.

MATLAB Function Block Design Patterns for HDL

19-33

• Quantized data variables must be used inside loops.

The following script shows how to model a synchronous up/down counter with preset
values and control inputs. The example provides both master reset control of persistent
state variables and local reset control using block inputs (e.g. presetClear). The
isempty condition enters the initialization process under the control of a synchronous
reset. The presetClear section is implemented in the output section in the generated
HDL code.

Both the up and down case statements implementing the count loop require that
the values of the counter are quantized after addition or subtraction. By default, the
MATLAB Function block automatically propagates fixed-point settings specified for
the block. In this script, however, fixed-point settings for intermediate quantities and
constants are explicitly specified.

function [Q, QN] = up_down_ctr(upDown, presetClear, loadData, presetData)

% up down result

% 'result' syntheses into sequential element

result_nt = numerictype(0,4,0);

result_fm = fimath('OverflowMode', 'saturate', 'RoundMode', 'floor');

initVal = fi(0, result_nt, result_fm);

persistent count;

if isempty(count)

 count = initVal;

end

if presetClear

 count = initVal;

elseif loadData

 count = presetData;

elseif upDown

 inc = count + fi(1, result_nt, result_fm);

 -- quantization of output

 count = fi(inc, result_nt, result_fm);

else

 dec = count - fi(1, result_nt, result_fm);

 -- quantization of output

 count = fi(dec, result_nt, result_fm);

end

Q = count;

QN = bitcmp(count);

Modeling Hardware Elements

The following code example shows how to model shift registers in MATLAB
Function block code by using the bitsliceget and bitconcat functions. This

19 Generating HDL Code with the MATLAB Function Block

19-34

function implements a serial input and output shifters with a 32–bit fixed-point
operand input. See the Shift Registers/shift_reg_1by32 block in the
eml_hdl_design_patterns library for more details.

function sr_out = fcn(shift, sr_in)

%shift register 1 by 32

persistent sr;

if isempty(sr)

 sr = fi(0, 0, 32, 0, 'fimath', fimath(sr_in));

end

% return sr[31]

sr_out = getmsb(sr);

if (shift)

 % sr_new[32:1] = sr[31:1] & sr_in

 sr = bitconcat(bitsliceget(sr, 31, 1), sr_in);

end

The following code example shows VHDL process code generated for the
shift_reg_1by32 block.

shift_reg_1by32 : PROCESS (shift, sr_in, sr)

 BEGIN

 sr_next <= sr;

 -- MATLAB Function Function 'Subsystem/shift_reg_1by32': '<S2>:1'

 --shift register 1 by 32

 --'<S2>:1:1

 -- return sr[31]

 --'<S2>:1:10'

 sr_out <= sr(31);

 IF shift /= '0' THEN

 --'<S2>:1:12'

 -- sr_new[32:1] = sr[31:1] & sr_in

 --'<S2>:1:14'

 sr_next <= sr(30 DOWNTO 0) & sr_in;

 END IF;

 END PROCESS shift_reg_1by32;

The Shift Registers/shift_reg_1by64 block shows a 64 bit shifter. In this case,
the shifter uses two fixed point words, to represent the operand, overcoming the 32–bit
word length limitation for fixed-point integers.

Browse the eml_hdl_design_patterns model for other useful hardware elements that
can be easily implemented using the MATLAB Function block.

 Design Guidelines for the MATLAB Function Block

19-35

Design Guidelines for the MATLAB Function Block

In this section...

“Introduction” on page 19-35
“Use Compiled External Functions With MATLAB Function Blocks” on page 19-35
“Build the MATLAB Function Block Code First” on page 19-35
“Use the hdlfimath Utility for Optimized FIMATH Settings” on page 19-36
“Use Optimal Fixed-Point Option Settings” on page 19-38
“Set the Output Data Type of MATLAB Function Blocks Explicitly” on page 19-40

Introduction

This section describes recommended practices when using the MATLAB Function block
for HDL code generation.

By setting MATLAB Function block options as described in this section, you can
significantly increase the efficiency of generated HDL code. See “Set Fixed-Point Options
for the MATLAB Function Block” on page 19-10 for an example.

Use Compiled External Functions With MATLAB Function Blocks

The HDL Coder software supports HDL code generation from MATLAB Function blocks
that include compiled external functions. This feature enables you to write reusable
MATLAB code and call it from multiple MATLAB Function blocks.

Such functions must be defined in files that are on the MATLAB Function block path.
Use the %#codegen compilation directive to indicate that the MATLAB code is suitable
for code generation. See “Function Definition” for information on how to create, compile,
and invoke external functions.

Build the MATLAB Function Block Code First

Before generating HDL code for a subsystem containing a MATLAB Function block, build
the MATLAB Function block code to check for errors. To build the code, select Build
from the Tools menu in the MATLAB Function Block Editor (or press CTRL+B).

19 Generating HDL Code with the MATLAB Function Block

19-36

Use the hdlfimath Utility for Optimized FIMATH Settings

The hdlfimath function is a utility that defines a FIMATH specification that is
optimized for HDL code generation. Replace the default MATLAB Function block
fimath specification with a call to the hdlfimath function, as shown in the following
figure.

 Design Guidelines for the MATLAB Function Block

19-37

The following listing shows the fimath setting defined by hdlfimath.
hdlfm = fimath(...

 'RoundMode', 'floor',...

 'OverflowMode', 'wrap',...

 'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...

19 Generating HDL Code with the MATLAB Function Block

19-38

 'SumMode', 'FullPrecision', 'SumWordLength', 32,...

 'CastBeforeSum', true);

Note: Use of 'floor' rounding mode for signed integer division will cause an error at
code generation time. The HDL division operator does not support 'floor' rounding
mode. Use 'round' mode, or else change the signed integer division operations to
unsigned integer division.

Note: When the fimath OverflowMode property of the fimath specification is set to
'Saturate', HDL code generation is disallowed for the following cases:

• SumMode is set to 'SpecifyPrecision'

• ProductMode is set to 'SpecifyPrecision'

Use Optimal Fixed-Point Option Settings

Use the default (Fixed-point) setting for the Treat these inherited signal types as
fi objects option, as shown in the following figure.

 Design Guidelines for the MATLAB Function Block

19-39

19 Generating HDL Code with the MATLAB Function Block

19-40

Set the Output Data Type of MATLAB Function Blocks Explicitly

By setting the output data type of a MATLAB Function block explicitly, you enable
optimizations for RAM mapping and pipelining. Avoid inheriting the output data type for
a MATLAB Function block for which you want to enable optimizations.

 Distributed Pipeline Insertion for MATLAB Function Blocks

19-41

Distributed Pipeline Insertion for MATLAB Function Blocks

In this section...

“Overview” on page 19-41
“Distributed Pipelining in a Multiplier Chain” on page 19-41

Overview

Distributed pipeline insertion is a special optimization for HDL code generated from
MATLAB Function blocks or Stateflow charts. Distributed pipeline insertion lets you
achieve higher clock rates in your HDL applications, at the cost of some amount of
latency caused by the introduction of pipeline registers.

For general information on distributed pipeline insertion, including limitations, see
“DistributedPipelining”.

Distributed Pipelining in a Multiplier Chain

This example shows distributed pipeline insertion in a simple model that implements a
chain of 5 multiplications.

To open the model, enter the following:

mpipe_multichain

The root level model contains a subsystem multi_chain. The multi_chain subsystem
functions as the device under test (DUT) from which to generate HDL code. The
subsystem drives a MATLAB Function block, mult8. The following figure shows the
subsystem.

19 Generating HDL Code with the MATLAB Function Block

19-42

The following shows a chain of multiplications as coded in the mult8 MATLAB Function
block:

function y = fcn(x1,x2,x3,x4,x5,x6,x7,x8)

% A chained multiplication:

% y = (x1*x2)*(x3*x4)*(x5*x6)*(x7*x8)

y1 = x1 * x2;

y2 = x3 * x4;

y3 = x5 * x6;

y4 = x7 * x8;

y5 = y1 * y2;

y6 = y3 * y4;

y = y5 * y6;

 Distributed Pipeline Insertion for MATLAB Function Blocks

19-43

To apply distributed pipeline insertion to this block, use the HDL Properties dialog box
for the mult8 block. Specify generation of two pipeline stages for the MATLAB Function
block, and enable the distributed pipeline optimization:

In the Configuration Parameters dialog box, the top-level HDL Code Generation
options specify that:

• VHDL code is generated from the subsystem mpipe_multchain/mult_chain.

19 Generating HDL Code with the MATLAB Function Block

19-44

• HDL Coder will generate code and display the generated model.

The insertion of two pipeline stages into the generated HDL code results in a latency of
two clock cycles. In the generated model, a delay of two clock cycles is inserted before the
output of the mpipe_multchain/mult_chain/mult8 subsystem so that simulations of
the model reflect the behavior of the generated HDL code. The following figure shows the
inserted Delay block.

The following listing shows the complete architecture section of the generated code.
Comments generated by HDL Coder indicate the pipeline register definitions.
ARCHITECTURE fsm_SFHDL OF mult8 IS

 SIGNAL pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

 SIGNAL b_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

 SIGNAL c_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

 SIGNAL d_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

 SIGNAL pipe_var_1_2 : signed(7 DOWNTO 0); -- Pipeline reg from stage 1 to stage 2

 SIGNAL b_pipe_var_1_2 : signed(7 DOWNTO 0); -- Pipeline reg from stage 1 to stage 2

 SIGNAL pipe_var_0_1_next : signed(7 DOWNTO 0);

 SIGNAL b_pipe_var_0_1_next : signed(7 DOWNTO 0);

 SIGNAL c_pipe_var_0_1_next : signed(7 DOWNTO 0);

 SIGNAL d_pipe_var_0_1_next : signed(7 DOWNTO 0);

 SIGNAL pipe_var_1_2_next : signed(7 DOWNTO 0);

 Distributed Pipeline Insertion for MATLAB Function Blocks

19-45

 SIGNAL b_pipe_var_1_2_next : signed(7 DOWNTO 0);

 SIGNAL y1 : signed(7 DOWNTO 0);

 SIGNAL y2 : signed(7 DOWNTO 0);

 SIGNAL y3 : signed(7 DOWNTO 0);

 SIGNAL y4 : signed(7 DOWNTO 0);

 SIGNAL y5 : signed(7 DOWNTO 0);

 SIGNAL y6 : signed(7 DOWNTO 0);

 SIGNAL mul_temp : signed(15 DOWNTO 0);

 SIGNAL mul_temp_0 : signed(15 DOWNTO 0);

 SIGNAL mul_temp_1 : signed(15 DOWNTO 0);

 SIGNAL mul_temp_2 : signed(15 DOWNTO 0);

 SIGNAL mul_temp_3 : signed(15 DOWNTO 0);

 SIGNAL mul_temp_4 : signed(15 DOWNTO 0);

 SIGNAL mul_temp_5 : signed(15 DOWNTO 0);

BEGIN

 initialize_mult8 : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 pipe_var_0_1 <= to_signed(0, 8);

 b_pipe_var_0_1 <= to_signed(0, 8);

 c_pipe_var_0_1 <= to_signed(0, 8);

 d_pipe_var_0_1 <= to_signed(0, 8);

 pipe_var_1_2 <= to_signed(0, 8);

 b_pipe_var_1_2 <= to_signed(0, 8);

 ELSIF clk'EVENT AND clk= '1' THEN

 IF clk_enable= '1' THEN

 pipe_var_0_1 <= pipe_var_0_1_next;

 b_pipe_var_0_1 <= b_pipe_var_0_1_next;

 c_pipe_var_0_1 <= c_pipe_var_0_1_next;

 d_pipe_var_0_1 <= d_pipe_var_0_1_next;

 pipe_var_1_2 <= pipe_var_1_2_next;

 b_pipe_var_1_2 <= b_pipe_var_1_2_next;

 END IF;

 END IF;

 END PROCESS initialize_mult8;

 -- This block supports an embeddable subset of the MATLAB language.

 -- See the help menu for details.

 --y = (x1+x2)+(x3+x4)+(x5+x6)+(x7+x8);

 mul_temp <= signed(x1) * signed(x2);

 y1 <= "01111111" WHEN (mul_temp(15) = '0') AND (mul_temp(14 DOWNTO 7) /= "00000000")

 ELSE "10000000" WHEN (mul_temp(15) = '1') AND (mul_temp(14 DOWNTO 7) /= "11111111")

 ELSE mul_temp(7 DOWNTO 0);

 mul_temp_0 <= signed(x3) * signed(x4);

 y2 <= "01111111" WHEN (mul_temp_0(15) ='0') AND (mul_temp_0(14 DOWNTO 7) /= "00000000")

 ELSE "10000000" WHEN (mul_temp_0(15) = '1') AND (mul_temp_0(14 DOWNTO 7) /= "11111111")

 ELSE mul_temp_0(7 DOWNTO 0);

 mul_temp_1 <= signed(x5) * signed(x6);

 y3 <= "01111111" WHEN (mul_temp_1(15) = '0') AND (mul_temp_1(14 DOWNTO 7) /= "00000000")

 ELSE "10000000" WHEN (mul_temp_1(15) = '1') AND (mul_temp_1(14 DOWNTO 7) /= "11111111")

 ELSE mul_temp_1(7 DOWNTO 0);

 mul_temp_2 <= signed(x7) * signed(x8);

 y4 <= "01111111" WHEN (mul_temp_2(15)= '0')AND (mul_temp_2(14 DOWNTO 7) /= "00000000")

 ELSE "10000000" WHEN (mul_temp_2(15) = '1') AND (mul_temp_2(14 DOWNTO 7) /= "11111111")

19 Generating HDL Code with the MATLAB Function Block

19-46

 ELSE mul_temp_2(7 DOWNTO 0);

 mul_temp_3 <= pipe_var_0_1 * b_pipe_var_0_1;

 y5 <= "01111111" WHEN (mul_temp_3(15) = '0') AND (mul_temp_3(14 DOWNTO 7)/= "00000000")

 ELSE "10000000" WHEN (mul_temp_3(15) = '1') AND (mul_temp_3(14 DOWNTO 7) /= "11111111")

 ELSE mul_temp_3(7 DOWNTO 0);

 mul_temp_4 <= c_pipe_var_0_1 * d_pipe_var_0_1;

 y6 <= "01111111" WHEN (mul_temp_4(15)='0') AND (mul_temp_4(14 DOWNTO 7) /= "00000000")

 ELSE "10000000" WHEN (mul_temp_4(15) = '1') AND (mul_temp_4(14 DOWNTO 7) /= "11111111")

 ELSE mul_temp_4(7 DOWNTO 0);

 mul_temp_5 <= pipe_var_1_2 * b_pipe_var_1_2;

 y <= "01111111" WHEN (mul_temp_5(15) = '0') AND (mul_temp_5(14 DOWNTO 7) /= "00000000")

 ELSE "10000000" WHEN (mul_temp_5(15) = '1') AND (mul_temp_5(14 DOWNTO 7) /= "11111111")

 ELSE std_logic_vector(mul_temp_5(7 DOWNTO 0));

 b_pipe_var_1_2_next <= y6;

 pipe_var_1_2_next <= y5;

 d_pipe_var_0_1_next <= y4;

 c_pipe_var_0_1_next <= y3;

 b_pipe_var_0_1_next <= y2;

 pipe_var_0_1_next <= y1;

END fsm_SFHDL;

20

Generating Scripts for HDL Simulators
and Synthesis Tools

• “Generate Scripts for Compilation, Simulation, and Synthesis” on page 20-2
• “Structure of Generated Script Files” on page 20-3
• “Properties for Controlling Script Generation” on page 20-4
• “Configure Compilation, Simulation, Synthesis, and Lint Scripts” on page 20-8
• “Add Synthesis Attributes” on page 20-16
• “Configure Synthesis Project Using Tcl Script” on page 20-17

20 Generating Scripts for HDL Simulators and Synthesis Tools

20-2

Generate Scripts for Compilation, Simulation, and Synthesis

You can enable or disable script generation and customize the names and content of
generated script files using either of the following methods:

• Use the makehdl or makehdltb functions, and pass in property name/property value
arguments, as described in “Properties for Controlling Script Generation” on page
20-4.

• Set script generation options in the HDL Code Generation > EDA Tool Scripts
pane of the Configuration Parameters dialog box, as described in “Configure
Compilation, Simulation, Synthesis, and Lint Scripts” on page 20-8.

 Structure of Generated Script Files

20-3

Structure of Generated Script Files

A generated EDA script consists of three sections, generated and executed in the
following order:

1 An initialization (Init) phase. The Init phase performs the required setup actions,
such as creating a design library or a project file. Some arguments to the Init phase
are implicit, for example, the top-level entity or module name.

2 A command-per-file phase (Cmd). This phase of the script is called iteratively, once
per generated HDL file or once per signal. On each call, a different file or signal
name is passed in.

3 A termination phase (Term). This is the final execution phase of the script. One
application of this phase is to execute a simulation of HDL code that was compiled in
the Cmd phase. The Term phase does not take arguments.

The HDL Coder software generates scripts by passing format strings to the fprintf
function. Using the GUI options (or makehdl and makehdltb properties) summarized in
the following sections, you can pass in customized format strings to the script generator.
Some of these format strings take arguments, such as the top-level entity or module
name, or the names of the VHDL or Verilog files in the design.

You can use valid fprintf formatting characters. For example, '\n' inserts a newline
into the script file.

20 Generating Scripts for HDL Simulators and Synthesis Tools

20-4

Properties for Controlling Script Generation

This section describes how to set properties in the makehdl or makehdltb functions to
enable or disable script generation and customize the names and content of generated
script files.

Enabling and Disabling Script Generation

The EDAScriptGeneration property controls the generation of script files.
By default, EDAScriptGeneration is set on. To disable script generation, set
EDAScriptGeneration to off, as in the following example.

makehdl('sfir_fixed/symmetric_fir,'EDAScriptGeneration','off')

Customizing Script Names

When you generate HDL code, script names are generated by appending a postfix string
to the model or subsystem name system.

When you generate test bench code , script names are generated by appending a postfix
string to the test bench name testbench_tb.

The postfix string depends on the type of script (compilation, simulation, or synthesis)
being generated. The default postfix strings are shown in the following table. For each
type of script, you can define your own postfix using the associated property.

Script Type Property Default Value

Compilation HDLCompileFilePostfix _compile.do

Simulation HDLSimFilePostfix _sim.do

Synthesis HDLSynthFilePostfix Depends on the selected
synthesis tool. See
“HDLSynthTool”.

The following command generates VHDL code for the subsystem system, specifying a
custom postfix string for the compilation script. The name of the generated compilation
script will be system_test_compilation.do.
makehdl('mymodel/system', 'HDLCompileFilePostfix', '_test_compilation.do')

 Properties for Controlling Script Generation

20-5

Customizing Script Code

Using the property name/property value pairs summarized in the following table, you can
pass in customized format strings to makehdl or makehdltb. The properties are named
according to the following conventions:

• Properties that apply to the initialization (Init) phase are identified by the substring
Init in the property name.

• Properties that apply to the command-per-file phase (Cmd) are identified by the
substring Cmd in the property name.

• Properties that apply to the termination (Term) phase are identified by the substring
Term in the property name.

Property Name and Default Description

Name: HDLCompileInit

Default:'vlib %s\n'

Format string passed to fprintf to write the Init
section of the compilation script. The argument is
the contents of the VHDLLibraryName property,
which defaults to'work'. You can override the
default Init string ('vlib work\n' by changing
the value of VHDLLibraryName.

Name: HDLCompileVHDLCmd

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
SimulatorFlags property and the file name of
the current entity or module. To omit the flags, set
SimulatorFlags to '' (the default).

Name: HDLCompileVerilogCmd

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
SimulatorFlags property and the file name of
the current entity or module. To omit the flags, set
SimulatorFlags to '' (the default).

Name:HDLCompileTerm

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Name: HDLSimInit

Default:

Format string passed to fprintf to write the
initialization section of the simulation script.

20 Generating Scripts for HDL Simulators and Synthesis Tools

20-6

Property Name and Default Description
 ['onbreak resume\n',...

 'onerror resume\n']

Name: HDLSimCmd

Default: 'vsim -novopt %s.%s\n'

Format string passed to fprintf to write the
simulation command.

If your target language is VHDL, the first implicit
argument is the value of the VHDLLibraryName
property. If your target language is Verilog, the first
implicit argument is 'work'.

The second implicit argument is the top-level
module or entity name.

Name: HDLSimViewWaveCmd

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command. The
implicit argument adds the signal paths for the DUT
top-level input, output, and output reference signals.

Name: HDLSimTerm

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script. The string is a
synthesis project creation command. The implicit
argument is the top-level module or entity name.

The content of the string is specific to the selected
synthesis tool. See “HDLSynthTool”.

Name: HDLSynthInit Format string passed to fprintf to write the Init
section of the synthesis script.

The content of the string is specific to the selected
synthesis tool. See “HDLSynthTool”.

Name: HDLSynthCmd Format string passed to fprintf to write the Cmd
section of the synthesis script. The argument is the
file name of the entity or module.

The content of the string is specific to the selected
synthesis tool. See “HDLSynthTool”.

 Properties for Controlling Script Generation

20-7

Property Name and Default Description

Name: HDLSynthTerm Format string passed to fprintf to write the Term
section of the synthesis script.

The content of the string is specific to the selected
synthesis tool. See “HDLSynthTool”.

Examples

The following example specifies a Mentor Graphics ModelSim command for the Init
phase of a compilation script for VHDL code generated from the subsystem system.

makehdl(system, 'HDLCompileInit', 'vlib mydesignlib\n')

The following example lists the resultant script, system_compile.do.

vlib mydesignlib

vcom system.vhd

The following example specifies that HDL Coder generate a Xilinx ISE synthesis file for
the subsystem sfir_fixed/symmetric_fir.

 makehdl('sfir_fixed/symmetric_fir','HDLSynthTool', 'ISE')

The following listing shows the resultant script, symmetric_fir_ise.tcl.

set src_dir "./hdlsrc"

set prj_dir "synprj"

file mkdir ../$prj_dir

cd ../$prj_dir

project new symmetric_fir.ise

xfile add ../$src_dir/symmetric_fir.vhd

project set family Virtex4

project set device xc4vsx35

project set package ff668

project set speed -10

process run "Synthesize - XST"

20 Generating Scripts for HDL Simulators and Synthesis Tools

20-8

Configure Compilation, Simulation, Synthesis, and Lint Scripts

You set options that configure script file generation on the EDA Tool Scripts pane.
These options correspond to the properties described in “Properties for Controlling Script
Generation” on page 20-4.

To view and set EDA Tool Scripts options:

1 Open the Configuration Parameters dialog box.
2 Select the HDL Code Generation > EDA Tool Scripts pane.

3 The Generate EDA scripts option controls the generation of script files. By default,
this option is selected.

If you want to disable script generation, clear this check box and click Apply.
4 The list on the left of the EDA Tool Scripts pane lets you select from several

categories of options. Select a category and set the options as desired. The categories
are:

 Configure Compilation, Simulation, Synthesis, and Lint Scripts

20-9

• Compilation script: Options related to customizing scripts for compilation
of generated VHDL or Verilog code. See “Compilation Script Options” on page
20-9 for further information.

• Simulation script: Options related to customizing scripts for HDL simulators.
See “Simulation Script Options” on page 20-10 for further information.

• Synthesis script: Options related to customizing scripts for synthesis tools. See
“Synthesis Script Options” on page 20-12 for further information.

Compilation Script Options

The following figure shows the Compilation script pane, with options set to their
default values.

The following table summarizes the Compilation script options.

Option and Default Description

Compile file postfix' Postfix string appended to the DUT name or test bench
name to form the script file name.

20 Generating Scripts for HDL Simulators and Synthesis Tools

20-10

Option and Default Description

'_compile.do'

Name: Compile initialization

Default:'vlib %s\n'

Format string passed to fprintf to write the Init
section of the compilation script. The argument is the
contents of the VHDLLibraryName property, which
defaults to'work'. You can override the default Init
string ('vlib work\n' by changing the value of
VHDLLibraryName.

Name: Compile command for VHDL

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the Cmd
section of the compilation script for VHDL files. The two
arguments are the contents of the SimulatorFlags
property option and the filename of the current entity or
module. To omit the flags, set SimulatorFlags to ''
(the default).

Name: Compile command for Verilog

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the Cmd
section of the compilation script for Verilog files. The
two arguments are the contents of the SimulatorFlags
property and the filename of the current entity or
module. To omit the flags, set SimulatorFlags to ''
(the default).

Name: Compile termination

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Simulation Script Options

The following figure shows the Simulation script pane, with options set to their default
values.

 Configure Compilation, Simulation, Synthesis, and Lint Scripts

20-11

The following table summarizes the Simulation script options.

Option and Default Description

Simulation file postfix

'_sim.do'

Postfix string appended to the model name or test bench
name to form the simulation script file name.

Simulation initialization

Default:
 ['onbreak resume\nonerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.

Simulation command

Default: 'vsim -novopt %s.%s\n'

Format string passed to fprintf to write the
simulation command.

If your TargetLanguage is 'VHDL', the first implicit
argument is the value of VHDLLibraryName. If your
TargetLanguage is 'Verilog', the first implicit
argument is 'work'.

20 Generating Scripts for HDL Simulators and Synthesis Tools

20-12

Option and Default Description

The second implicit argument is the top-level module or
entity name.

Simulation waveform viewing
command

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command. The
top-level module or entity signal names are implicit
arguments.

Simulation termination

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script.

Synthesis Script Options

The following figure shows the Synthesis script pane, with options set to their
default values. The Choose synthesis tool property defaults to None, which disables
generation of a synthesis script.

 Configure Compilation, Simulation, Synthesis, and Lint Scripts

20-13

To enable synthesis script generation, select a synthesis tool from the Choose synthesis
tool menu.

When you select a synthesis tool, HDL Coder:

• Enables synthesis script generation.
• Enters a file name postfix (specific to the chosen synthesis tool) into the Synthesis

file postfix field.
• Enters strings (specific to the chosen synthesis tool) into the initialization, command,

and termination fields.

The following figure shows the default option values entered for the Mentor Graphics
Precision tool.

20 Generating Scripts for HDL Simulators and Synthesis Tools

20-14

The following table summarizes the Synthesis script options.

Option Name Description

Choose synthesis tool None (default): do not generate a synthesis script
Xilinx ISE: generate a synthesis script for Xilinx ISE
Microsemi Libero: generate a synthesis script for Microsemi
Libero
Mentor Graphics Precision: generate a synthesis script for
Mentor Graphics Precision
Altera Quartus II: generate a synthesis script for Altera
Quartus II
Synopsys Synplify Pro: generate a synthesis script for
Synopsys Synplify Pro
Xilinx Vivado: generate a synthesis script for Xilinx Vivado

 Configure Compilation, Simulation, Synthesis, and Lint Scripts

20-15

Option Name Description

Custom: generate a custom synthesis script
Synthesis file postfix Your choice of synthesis tool sets the postfix for generated

synthesis file names to one of the following:
_ise.tcl

_libero.tcl

_precision.tcl

_quartus.tcl

_synplify.tcl

_vivado.tcl

_custom.tcl

Synthesis initialization Format string passed to fprintf to write the Init section of
the synthesis script. The default string is a synthesis project
creation command. The implicit argument is the top-level
module or entity name.

The content of the string is specific to the selected synthesis
tool.

Synthesis command Format string passed to fprintf to write the Cmd section of
the synthesis script. The implicit argument is the file name of
the entity or module.

The content of the string is specific to the selected synthesis
tool.

Synthesis termination Format string passed to fprintf to write the Term section of
the synthesis script.

The content of the string is specific to the selected synthesis
tool.

20 Generating Scripts for HDL Simulators and Synthesis Tools

20-16

Add Synthesis Attributes

To learn how to add synthesis attributes in the generated HDL code for multiplier
mapping, see “DSPStyle”.

 Configure Synthesis Project Using Tcl Script

20-17

Configure Synthesis Project Using Tcl Script

You can add a Tcl script that configures your synthesis project.

To configure your synthesis project using a Tcl script:

1 Create a Tcl script that contains commands to customize your synthesis project.

For example, to specify the finite state machine style:

• For Xilinx ISE, create a Tcl script that contains the following line:

project set "FSM Encoding Algorithm" "Gray" -process "Synthesize - XST"

• For Xilinx Vivado, create a Tcl script that contains the following line:

set_property STEPS.SYNTH_DESIGN.ARGS.FSM_EXTRACTION gray [get_runs synth_1]

2 In the HDL Workflow Advisor, in the FPGA Synthesis and Analysis > Create
Project task, in the Additional source files field, enter the full path to the Tcl file
manually, or by using the Add button.

When HDL Coder creates the project, the Tcl script is executed to apply the synthesis
project settings.

20-18

21

Using the HDL Workflow Advisor

• “What Is the HDL Workflow Advisor?” on page 21-2
• “Open the HDL Workflow Advisor” on page 21-3
• “Using the HDL Workflow Advisor Window” on page 21-6
• “Save and Restore HDL Workflow Advisor State” on page 21-9
• “Fix a Workflow Advisor Warning or Failure” on page 21-13
• “View and Save HDL Workflow Advisor Reports” on page 21-15
• “Map to an FPGA Floating-Point Library” on page 21-20
• “FPGA Synthesis and Analysis” on page 21-25
• “Automated Workflows for Specific Targets and Tools” on page 21-35

21 Using the HDL Workflow Advisor

21-2

What Is the HDL Workflow Advisor?

The HDL Workflow Advisor is a tool that supports and integrates the stages of the FPGA
design process, such as:

• Checking the Simulink model for HDL code generation compatibility
• Automatically fixing model settings that are incompatible with HDL code generation
• Generation of RTL code, RTL test bench, a cosimulation model, or a combination of

these
• Synthesis and timing analysis through integration with third-party synthesis tools
• Back annotation of the Simulink model with critical path and other information

obtained during synthesis
• Complete automated workflows for selected FPGA development target devices and

Simulink Real-Time™, including FPGA-in-the-Loop simulation

 Open the HDL Workflow Advisor

21-3

Open the HDL Workflow Advisor

To start the HDL Workflow Advisor from a model:

1 Open your model.
2 Select Code > HDL Code > HDL Workflow Advisor.
3 In the System Selector window, select the DUT that you want to review. In the

following figure, the symmetric_fir subsystem is the selected DUT.

21 Using the HDL Workflow Advisor

21-4

 Open the HDL Workflow Advisor

21-5

4 Click OK.

The HDL Workflow Advisor initializes and appears.

To start the HDL Workflow Advisor from the command line, enter
hdladvisor(system), where system is a handle or name of the model or subsystem
that you want to check. For more information, see the “hdladvisor” function reference
page.

21 Using the HDL Workflow Advisor

21-6

Using the HDL Workflow Advisor Window

The following figure shows the top-level view of the HDL Workflow Advisor. The left
pane lists the folders in the HDL Workflow Advisor hierarchy. Each folder represents a
group or category of related tasks.

Expanding the folders shows available tasks in each folder. The following figure shows
the expanded Prepare Model For HDL Code Generation folder, with the Check
Global Settings task selected.

 Using the HDL Workflow Advisor Window

21-7

From the left pane, you can select a folder or an individual task. The HDL Workflow
Advisor displays information about the selected folder or task in the right pane.

The content of the right pane depends on the selected folder or task. For some tasks, the
right pane contains simple controls for running the task and a display area for status
messages and other task results. For other tasks (for example, setting code or test bench
generation parameters), the right pane displays many parameter and option settings.

When you right-click a folder or an individual task in the left pane, a context menu
appears. The context menu lets you:

21 Using the HDL Workflow Advisor

21-8

• Select a task or a group of tasks to run sequentially.
• Reset the status of one or more tasks to Not Run. Resetting status enables you to

rerun tasks.
• View context-sensitive help (CSH) for an individual task.

 Save and Restore HDL Workflow Advisor State

21-9

Save and Restore HDL Workflow Advisor State

In this section...

“How the Save and Restore Process Works” on page 21-9
“Limitations of the Save and Restore Process” on page 21-9
“Save the HDL Workflow Advisor State” on page 21-9
“Restore the HDL Workflow Advisor State” on page 21-11

How the Save and Restore Process Works

By default, the HDL Coder software saves the state of the most recent HDL Workflow
Advisor session. The next time you activate the HDL Workflow Advisor, it returns to that
state.

You can also save the current settings of the HDL Workflow Advisor to a named restore
point. At a later time, you can restore the same settings by loading the restore point data
into the HDL Workflow Advisor.

Limitations of the Save and Restore Process

The save and restore process has the following limitations:

• Operations that you perform outside the HDL Workflow Advisor is not included in the
save/restore process.

• The state of HDL Workflow Advisor tasks involving third-party tools are not saved or
restored.

Save the HDL Workflow Advisor State

You can create and save a restore point after completion of a task sequence. For example,
the following figure shows the HDL Workflow Advisor after completion of the Set Target
Interface task.

21 Using the HDL Workflow Advisor

21-10

To save the HDL Workflow Advisor settings:

1 In the HDL Workflow Advisor, select File > Save Restore Point As.
2 In the Name field, enter a name for the restore point.
3 In the Description field, you can add an optional description of the restore point.

 Save and Restore HDL Workflow Advisor State

21-11

4 Click Save. The HDL Workflow Advisor saves a restore point of the current settings.

Restore the HDL Workflow Advisor State

To load a restore point:

1 In the HDL Workflow Advisor, select File > Load Restore Point.

21 Using the HDL Workflow Advisor

21-12

2 Select the restore point that you want.
3 Click Load.

The HDL Workflow Advisor issues a warning that the restoration will overwrite
current settings.

4 Click Load to load the restore point you selected. The HDL Workflow Advisor
restores the previously saved state.

 Fix a Workflow Advisor Warning or Failure

21-13

Fix a Workflow Advisor Warning or Failure

If a task terminates due to a warning or failure condition, the right pane of the HDL
Workflow Advisor shows information about the problems. This information appears in a
Result subpane. The Result subpane also suggests model settings you can use to fix the
problems.

Some tasks have an Action subpane that lets you apply the recommended actions listed
in the Result subpane automatically. In the following example, the Check Global
Settings task has failed, displaying an incorrect model setting in the Result pane.

The Action subpane, below the Result subpane, contains a Modify All button. To fix
the problems that appear in the Result subpane, click the Modify All button.

21 Using the HDL Workflow Advisor

21-14

After you click Modify All, the Result subpane reports the changes that were applied.
The task status is reset, enabling you to rerun the task and proceed to the following
tasks.

 View and Save HDL Workflow Advisor Reports

21-15

View and Save HDL Workflow Advisor Reports

In this section...

“Viewing HDL Workflow Advisor Reports” on page 21-15
“Saving HDL Workflow Advisor Reports” on page 21-18

Viewing HDL Workflow Advisor Reports

When the HDL Workflow Advisor runs tasks, it automatically generates an HTML report
of task results. Each folder in the HDL Workflow Advisor contains a report for the checks
within that folder and its subfolders.

You can access reports by selecting a folder and clicking the link in the Report subpane.
In the following example, the Prepare Model For HDL Code Generation folder is
selected.

21 Using the HDL Workflow Advisor

21-16

The following report shows typical results for a run of the Prepare Model For HDL
Code Generation tasks.

 View and Save HDL Workflow Advisor Reports

21-17

As you run checks, the HDL Workflow Advisor updates the reports with the latest
information for each check in the folder. A message appears in the report when you run
the checks at different times. Time stamps indicate when checks have been run. The time
of the current run appears at the top right of the report. Checks that occurred during
previous runs have a time stamp following the check name.

You can manipulate the report to show only what you are interested in viewing as
follows:

21 Using the HDL Workflow Advisor

21-18

• The check boxes under Run Summary allow you to view only the checks with the
status that you are interested in viewing. For example, you can remove the checks
that have not run by clearing the check box next to the Not Run status.

• Minimize folder results in the report by clicking the minus sign next to the folder
name. When you minimize a folder, the report updates to display a run summary for
that folder.

You can view the report for a folder automatically each time the folder's tasks run. To do
this, select Show report after run:

Saving HDL Workflow Advisor Reports

You can archive an HDL Workflow Advisor report by saving it to a new location. To save
a report:

1 In the HDL Workflow Advisor, navigate to the folder that contains the report you
want to save.

 View and Save HDL Workflow Advisor Reports

21-19

2 Select the folder that you want. The right pane of the HDL Workflow Advisor shows
information about that folder, including a Report subpane.

3 In the Report subpane, click Save As.
4 In the Save As dialog box, navigate to the location where you want to save the

report, and click Save. The HDL Workflow Advisor saves the report to the new
location.

Note: If you rerun the HDL Workflow Advisor, the report is updated in the working
folder, not in the save location. You can find the full path to the report in the title
bar of the report window. Typically, the report is within the working folder: slprj
\modeladvisor\HDLAdv_\model_name\DUT_name\.

21 Using the HDL Workflow Advisor

21-20

Map to an FPGA Floating-Point Library

In this section...

“What is an FPGA Floating-Point Library?” on page 21-20
“Why Map to an FPGA Floating Point Library?” on page 21-20
“Supported Floating-Point Operations” on page 21-20
“Setup for FPGA Floating-Point Library Mapping” on page 21-21
“How to Map to an FPGA Floating-Point Library” on page 21-22
“FPGA Floating-Point Library Mapping Results Analysis” on page 21-23
“Limitations for FPGA Floating-Point Library Mapping” on page 21-23

What is an FPGA Floating-Point Library?

An FPGA floating-point library is a set of floating-point IP blocks that is optimized for
synthesis on specific FPGA hardware.

Altera Megafunctions and Xilinx LogiCORE IP are examples of such libraries.

Why Map to an FPGA Floating Point Library?

Mapping to an FPGA floating-point library enables you to synthesize your floating-point
design without having to do floating-point to fixed-point conversion. Eliminating the
floating-point to fixed-point conversion step has the following advantages:

• Reduces the loss of data precision.
• Enables you to model a wider dynamic range.
• Saves time by skipping a step in the code generation process.

Supported Floating-Point Operations

Xilinx LogiCORE IP Floating-Point Operation Support

HDL Coder can map to the following Xilinx LogiCORE IP floating-point operations:

• add
• subtract

 Map to an FPGA Floating-Point Library

21-21

• multiply
• divide
• comparison
• conversion
• square root

Altera Megafunction Floating-Point Operation Support

HDL Coder can map to the following Altera Megafunction floating-point operations:

• absolute value
• adder
• comparator
• converter
• divider
• exponential
• inverse
• inverse square root
• multiplier
• natural logarithm
• square root
• subtractor
• trigonometric cosine
• trigonometric sine

Setup for FPGA Floating-Point Library Mapping

To map your floating-point design to an Altera or Xilinx FPGA floating-point library, you
must:

• Know which Altera or Xilinx FPGA you are using.

• If you are using a Xilinx FPGA, set up your Xilinx FPGA floating-point library
tool. See “Xilinx FPGA Floating-Point Library Setup”.

• Set up your FPGA synthesis tool. See “Synthesis Tool Path Setup”.

21 Using the HDL Workflow Advisor

21-22

Note: If you are using Altera Quartus 10.1 or 11.0, you must
turn on the AlteraBackwardIncompatibleSinCosPipeline
global property using hdlset_param. For example, to turn on
AlteraBackwardIncompatibleSinCosPipeline for a model, my_dut, enter the
following at the command line:

hdlset_param('my_dut','AlteraBackwardIncompatibleSinCosPipeline','on')

How to Map to an FPGA Floating-Point Library

To map to an FPGA floating-point library:

1 Open the HDL Workflow Advisor.
2 In the left pane, click HDL Workflow Advisor > Set Target > Set Target Device

and Synthesis Tool. The following Set Target Device and Synthesis Tool pane
appears.

3 For Target workflow, select Generic ASIC/FPGA.
4 Select your Synthesis tool from the dropdown menu. The Set Target Library (for

floating-point synthesis support) checkbox becomes available.

The Set Target Library (for floating-point synthesis support) option is not
available if your synthesis tool is Xilinx Vivado.

 Map to an FPGA Floating-Point Library

21-23

5 Select the Family, Device, Package, and Speed of your synthesis target.
6 Select Set Target Library (for floating-point synthesis support). A new task,

Set Target Library, appears in the left pane.
7 In the left pane, click Set Target Library to see the following pane.

8 Select Objective and Block latencies.
9 (For Xilinx devices only) If you wish to enter the path to the pre-compiled simulation

library, select Set Xilinx simulation library path and enter the Absolute path.
Otherwise, HDL Coder automatically detects the simulation library path.

FPGA Floating-Point Library Mapping Results Analysis

To see your FPGA floating-point library mapping results, enable generation of the
Resource Utilization Report and Optimization Report before you begin code generation.
To learn how to generate these reports, see “ Create and Use Code Generation Reports”.

The Resource Utilization Report shows the number of target-specific hardware resources
used by your design. To learn more about the Resource Utilization Report, see “Resource
Utilization Report”.

The Optimization Report shows whether HDL Coder was able to meet the minimum or
maximum block latencies you chose from the Set Target Library pane. To learn more
about the Optimization Report, see “Optimization Report”.

Limitations for FPGA Floating-Point Library Mapping

If your synthesis tool is Xilinx Vivado, you cannot use FPGA floating-point library
mapping.

21 Using the HDL Workflow Advisor

21-24

Data type limitations:

• Complex data type is not supported.
• Conversion between double and single precision data types is not supported.

Unsupported Simulink blocks:

• MATLAB Function
• Chart
• Truth Table
• FFT
• Lookup Tables
• RAMs
• MinMax
• DTI
• Counters

Unsupported Simulink block modes:

• Sum with - ports.
• Sum with more than 2 inputs.
• Product with more than 2 inputs.
• Switch with a control input other than u2 ~= 0.
• Sum of Elements with an architecture other than Tree.
• Product of Elements with an architecture other than Tree.

HDL Coder workflow restrictions:

• IP Core Generation workflow is not supported.
• For FPGA Turnkey and Simulink Real-Time FPGA I/O workflows, your DUT ports

cannot use floating-point data types.
•

 FPGA Synthesis and Analysis

21-25

FPGA Synthesis and Analysis

In this section...

“FPGA Synthesis and Analysis Tasks Overview” on page 21-25
“Creating a Synthesis Project” on page 21-25
“Performing Synthesis, Mapping, and Place and Route” on page 21-27
“Annotating Your Model with Critical Path Information” on page 21-30

FPGA Synthesis and Analysis Tasks Overview

The tasks in the FPGA Synthesis and Analysis folder let you run third-party FPGA
synthesis and analysis tools without leaving the HDL Workflow Advisor environment.
Tasks in this category include:

• Creation of FPGA synthesis projects for supported FPGA synthesis tools
• Launching supported FPGA synthesis tools to perform synthesis, mapping, and place/

route tasks
• Annotation of your original model with critical path information obtained from the

synthesis tools

Note: A supported synthesis tool must be installed, and the synthesis tool executable
must be on the system path to perform the tasks in the FPGA Synthesis and Analysis
folder. See “Third-Party Synthesis Tools” for more information.

Creating a Synthesis Project

The Create Project task does the following:

• Realizes a synthesis project for the tool from the previously generated HDL code
• Creates a link to the project files in the Result subpane
• (Optional) Launches the synthesis tool and opens the synthesis project

The following figure shows the Create Project task in an enabled state, after HDL code
generation.

21 Using the HDL Workflow Advisor

21-26

The Create Project task parameters are:

• Project directory: The HDL Workflow Advisor writes the project files to a subfolder
of the hdlsrc folder. You can enter the path to an alternative folder, or click the
Browse button to navigate to the desired folder.

• Additional source files: To include HDL files (or other synthesis files, such as UCF
or SDC files) that the code does not generate in your synthesis project, enter the full
path to the desired files. Click the Add button to locate each file.

The following figure shows the HDL Workflow Advisor after passing the Create
Project task. If you want to view the synthesis project, click the hyperlink in the Result
subpane. This link launches the synthesis tool and opens the synthesis project.

 FPGA Synthesis and Analysis

21-27

Performing Synthesis, Mapping, and Place and Route

Performing Logic Synthesis

The Perform Logic Synthesis task does the following:

• Launches the synthesis tool in the background.
• Opens the previously generated synthesis project, compiles HDL code, synthesizes the

design and emits netlists and related files.
• Displays a synthesis log in the Result subpane.

The Perform Logic Synthesis task does not have input parameters. The following
figure shows the HDL Workflow Advisor after passing the Perform Logic Synthesis
task.

21 Using the HDL Workflow Advisor

21-28

Performing Mapping

The Perform Mapping task does the following:

• Launches the synthesis tool in the background.
• Runs a mapping process that maps the synthesized logic design to the target FPGA.
• Emits a circuit description file for use in the place and route phase.
• Displays a log in the Result subpane.

If your tool does not support early timing estimation, you can enable Skip pre-route
timing analysis. When this option is enabled, the Annotate Model with Synthesis
Result task sets Critical path source to post-route.

The following figure shows the HDL Workflow Advisor after passing the Perform
Mapping task.

 FPGA Synthesis and Analysis

21-29

Performing Place and Route

The Perform Place and Route task does the following:

• Launches the synthesis tool in the background.
• Runs a place and route process using the circuit description produced by the mapping

process, and emits a circuit description suitable for programming an FPGA.
• Emits pre- and post-routing timing information for use in critical path analysis and

back annotation of your source model.
• Displays a log in the Result subpane.

Unlike other tasks in the HDL Workflow Advisor hierarchy, Perform Place and Route
is optional. If you select Skip this task in the right-hand pane, the HDL Workflow
Advisor executes the workflow, but omits the Perform Place and Route task, marking
it Passed. Select Skip this task if you prefer to do place and route work manually.

21 Using the HDL Workflow Advisor

21-30

If the Perform Place and Route task fails, you can select Ignore place and route
errors to continue to the Annotate Model with Synthesis Result task. This allows
you to use post-mapping timing results to find critical paths in your model even if place
and route fails.

The following figure shows the HDL Workflow Advisor after passing the Perform Place
and Route task.

Annotating Your Model with Critical Path Information

The Annotate Model with Synthesis Result task helps you identify critical paths in
your model. In this task, you can analyze pre- or post-routing timing information from

 FPGA Synthesis and Analysis

21-31

the Perform Place and Route task and visually highlight one or more critical paths in
your model.

Note: If the Annotate Model with Synthesis Result task is not available, clear the
check box for Generate FPGA top level wrapper in the Generate RTL Code and
Testbench task.

The following figure shows the Annotate Model with Synthesis Result task in an
enabled state.

The task parameters are:

21 Using the HDL Workflow Advisor

21-32

• Critical path source: Select pre-route or post-route. The default is pre-route.

Note that the pre-route option is unavailable when Skip pre-route timing
analysis is enabled in the Perform Mapping task.

• Critical path number: You can annotate up to 3 critical paths. Select the number of
paths you want to annotate. The default is 1.

• Show all paths: Show critical paths, including duplicate paths. The default is off.
• Show unique paths: Show only the first instance of a path that is duplicated. The

default is off.
• Show delay data: Annotate the cumulative timing delay on each path. The default is

on.
• Show ends only: Show the endpoints of each path, but omit the connecting signal

lines. The default is off.

When the Annotate Model with Synthesis Result task runs to completion, HDL
Coder displays the DUT with critical path information highlighted. The following figure
shows a subsystem after critical path annotation. Using default options, the annotation
includes the endpoints, signal lines, and delay data.

 FPGA Synthesis and Analysis

21-33

After the Annotate Model with Synthesis Result task runs to completion, the HDL
Workflow Advisor enables the Reset Highlighting button in the Action subpane. When
you click this button, the HDL Workflow Advisor:

• Clears critical path annotations from the model.
• Resets the Annotate Model with Synthesis Result task.

21 Using the HDL Workflow Advisor

21-34

 Automated Workflows for Specific Targets and Tools

21-35

Automated Workflows for Specific Targets and Tools

The HDL Workflow Advisor helps you perform complete automated workflows for a
number of target devices. For the Target workflow you select, the Target platform
menu lists the supported target devices.

After you select the desired target device and configure its I/O interface, you can let the
HDL Workflow Advisor perform the subsequent model checking, HDL code generation,
and FPGA synthesis and analysis tasks, without your intervention. For information on
automated workflows for specific types of targets, see:

• “Generate Simulink Real-Time Interface for Speedgoat Boards”
• “Program Standalone Xilinx FPGA Development Board from Simulink”
• “Program Standalone Altera FPGA Development Board from Simulink”
• “Custom IP Core Generation”

21 Using the HDL Workflow Advisor

21-36

• “Hardware-Software Codesign Workflow for SoC Platforms”

22

HDL Test Bench

22 HDL Test Bench

22-2

Generate Test Bench With File I/O

In this section...

“When to Use File I/O In Test Bench” on page 22-2
“How Test Bench Generation with File I/O Works” on page 22-2
“Test Bench Data Files” on page 22-2
“How to Generate Test Bench with File I/O” on page 22-3
“Limitations When Using File I/O In Test Bench” on page 22-4

When to Use File I/O In Test Bench

By default, HDL Coder generates an HDL testbench that contains the simulation data as
constants. If you have a long running simulation, the generated HDL test bench contains
a large amount of data, and therefore requires more memory to run in an HDL simulator.

Generate your test bench with file I/O when your MATLAB or Simulink simulation is
long, or you experience memory constraints while running your HDL simulation.

How Test Bench Generation with File I/O Works

By default, when you generate an HDL test bench, HDL Coder writes the stimulus and
reference data from your simulation as constants in the test bench code.

When you enable the Use file I/O to read/write test bench data option in the HDL
Workflow Advisor and generate a test bench, HDL Coder saves the DUT input and
output data from your MATLAB or Simulink simulation to data files (.dat).

During HDL simulation, the HDL test bench reads the saved stimulus from the .dat
files and compares the actual DUT output with the expected output, which is also saved
in .dat files. This saves memory compared to the default option.

Note that reference data is delayed by 1 clock cycle in the waveform viewer compared to
default test bench generation. This is due to the delay in reading data from files.

Test Bench Data Files

Stimulus and reference data for each DUT input and output is saved in a separate test
bench data file (.dat), with the following exceptions:

 Generate Test Bench With File I/O

22-3

• 2 files are generated for the real and imaginary parts of complex data.
• Constant DUT input data is written to the test bench as constants, the same as for

the default option.

Vector input or output data is saved as a single file.

How to Generate Test Bench with File I/O

Using the HDL Workflow Advisor

To generate a test bench that uses file I/O from the HDL Workflow Advisor:

1 In the HDL Code Generation > Set Code Generation Options > Set Testbench
Options task, enable Use file I/O to read/write test bench data and click Apply.

2 In the HDL Code Generation > Generate RTL Code and Testbench task,
enable Generate RTL testbench and click Apply.

After you generate code, the message window shows links to the test bench data files
(.dat).

Using the Command Line

To generate a test bench that uses file I/O, use the UseFileIOInTestBench parameter
with makehdltb.

For example, to generate a Verilog test bench using file I/O for a DUT subsystem,
sfir_fixed/symmetric_fir, enter:

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','Verilog','UseFileIOInTestBench','on');

Begin TestBench generation.

Generating HDL TestBench for 'sfir_fixed/symmetric_fir'.

Begin simulation of the model 'gm_sfir_fixed'...

Collecting data...

Generating test bench: hdlsrc\sfir_fixed\symmetric_fir_tb.v

Creating stimulus vectors...

Generating test bench data file: hdlsrc\sfir_fixed\x_in.dat

Generating test bench data file: hdlsrc\sfir_fixed\y_out.dat

Generating test bench data file: hdlsrc\sfir_fixed\delayed_x_out.dat

HDL TestBench generation complete.

22 HDL Test Bench

22-4

Limitations When Using File I/O In Test Bench

To use file I/O in your test bench, the following limitations apply:

• Double and single data types at DUT inputs and outputs are not supported.
• If your target language is VHDL, the Scalarize vector ports option must be off.

23

FPGA Board Customization

• “FPGA Board Customization” on page 23-2
• “Create Custom FPGA Board Definition” on page 23-7
• “Create Xilinx KC705 Evaluation Board Definition File” on page 23-8
• “FPGA Board Manager” on page 23-21
• “New FPGA Board Wizard” on page 23-25
• “FPGA Board Editor” on page 23-36

23 FPGA Board Customization

23-2

FPGA Board Customization
In this section...

“Feature Description” on page 23-2
“Custom Board Management” on page 23-2
“FPGA Board Requirements” on page 23-2

Feature Description

Both HDL Coder and HDL Verifier software include a set of predefined FPGA boards you
can use with the Turnkey or FPGA-in-the-Loop (FIL) workflows (you can view the lists
of these supported boards in the HDL Workflow Advisor or in the FIL Wizard). With the
FPGA Board Manager, you can add additional boards to use either of these workflows.
All you need to add a board is the relevant information from the board specification
documentation.

The FPGA Board Manager is the hub for accessing wizards and dialog boxes that take
you through the steps necessary to create a custom board configuration. You can also
access options to import a custom board, remove a board, make a copy of a board for
further modification, and verify a new board.

Custom Board Management

You manage FPGA custom boards through the following user interfaces:

• “FPGA Board Manager” on page 23-21: portal to adding, importing, deleting, and
otherwise managing board definition files.

• “New FPGA Board Wizard” on page 23-25: This wizard guides you through
creating a custom board definition file with information you obtain from the board
specification documentation.

• “FPGA Board Editor” on page 23-36: user interface for viewing or editing board
information.

To begin, review the “FPGA Board Requirements” on page 23-2 and then follow the
steps described in “Create Custom FPGA Board Definition” on page 23-7.

FPGA Board Requirements

• “FPGA Device” on page 23-3

 FPGA Board Customization

23-3

• “FPGA Design Software” on page 23-3
• “General Hardware Requirements” on page 23-3
• “Ethernet Connection Requirements for FPGA-in-the-Loop” on page 23-4
• “JTAG Connection Requirements for FPGA-in-the-Loop” on page 23-6

FPGA Device

Select one of the following links to view a current list of supported FPGA device families:

• For use with FPGA-in-the-Loop (FIL), see “Supported FPGA Device Families for
Board Customization” in the HDL Verifier documentation.

• For use with with FPGA Turnkey, see “Supported FPGA Device Families for Board
Customization” in the HDL Coder documentation.

FPGA Design Software

Altera Quartus II or Xilinx ISE is required. See product documentation for HDL Coder or
HDL Verifier for the specific software versions required.

The following MathWorks® tools are required to use FIL or FPGA Turnkey.

Workflow Required Tools

FPGA-in-the-Loop • HDL Verifier
• Fixed-Point Designer

FPGA Turnkey • HDL Coder
• Simulink
• Fixed-Point Designer

General Hardware Requirements

To use a FPGA development board, make sure that you have the following FPGA
resources:

• Clock: An external clock connected to the FPGA is required. The clock can be
differential or single-ended. The accepted clock frequency is from 5 MHz to 300 MHz.
When used with FIL, there are additional requirements to the clock frequency (see
“Ethernet Connection Requirements for FPGA-in-the-Loop” on page 23-4).

23 FPGA Board Customization

23-4

• Reset: An external reset signal connected to the FPGA is optional. When supplied,
this signal functions as the global reset to the FPGA design.

• JTAG download cable: A JTAG download cable that connects host PC and FPGA
board is required for the FPGA programming. The FPGA must be programmable
using Xilinx iMPACT or Altera Quartus II.

Ethernet Connection Requirements for FPGA-in-the-Loop

• “Supported Ethernet PHY Device” on page 23-4
• “Ethernet PHY Interface” on page 23-4
• “Special Timing considerations for RGMII” on page 23-5
• “Special Clock Frequency Requirement for GMII/RGMII/SGMII Interface” on page

23-5

Supported Ethernet PHY Device

On the FPGA board, the Ethernet MAC is implemented in FPGA. An Ethernet PHY chip
is required to be on the FPGA board to connect the physical medium to the Media ACcess
(MAC) layer in the FPGA.

Note: When programming the FPGA, HDL Verifier assumes that there is only one
download cable connected to the Host PC and it can be automatically recognized by the
FPGA programming software. If this is not the case, use FPGA programming software to
program your FPGA with the correct options.

The FIL feature is tested with the following Ethernet PHY chips and may not work with
other Ethernet PHY devices.

Ethernet PHY Chip Test

Marvell® Alaska 88E1111 For GMII, RGMII, SGMII, and 100 Base-T
MII interfaces

National Semiconductor DP83848C For 100 Base-T MII interface only

Ethernet PHY Interface

The Ethernet PHY chip must be connected to the FPGA using one of the following
interfaces:

 FPGA Board Customization

23-5

Interface Note

Gigabit Media Independent Interface (GMII) Only 1000 Mbits/s speed is supported
using this interface.

Reduced Gigabit Media Independent
Interface (RGMII)

Only 1000 Mbits/s speed is supported
using this interface.

Serial Gigabit Media Independent Interface
(SGMII)

Only 1000 Mbits/s speed is supported
using this interface.

Media Independent Interface (MII) Only 100 Mbits/s speed is supported
using this interface.

Note: For GMII, the TXCLK (clock signal for 10/100 Mbits signal) signal is not required
because only 1000 Mbits/s speed is supported.

In addition to the standard GMII/RGMII/SGMII/MII interface signals, FPGA-in-the-Loop
also requires an Ethernet PHY chip reset signal (ETH_RESET_n). This active-low reset
signal performs the PHY hardware reset by FPGA. It is active-low.
Special Timing considerations for RGMII

When the RGMII interface is used, the MAC on the FPGA assumes that the data
are aligned with the edges of reference clock as specified in the original RGMII v1.3
standard. In this case, PC board designs provide additional trace delay for clock signals
(RGMII v1.3).

The RGMII v2.0 standard allows the transmitter to integrate this delay so that PC board
delay is not required. Marvell Alaska 88E1111 has internal registers to add internal
delays to RX and TX clocks. The internal delays are not added by default. This means
you use the MDIO module to configure Marvell 88E1111 to add internal delays. (See “FIL
I/O” on page 23-28 for the usage of the MDIO module.)
Special Clock Frequency Requirement for GMII/RGMII/SGMII Interface

When GMII/RGMII/SGMII interfaces are used, an exact 125MHz clock is required by
FPGA to drive the 1000 Mbits/s communication. This clock is derived from the user
supplied external clock using the clock module or PLL.

Not all external clock frequencies can derive an exact 125 MHz clock frequency.
The acceptable clock frequencies vary depending on the FPGA device family. The
recommended clock frequencies are 50, 100, 125, and 200 MHz.

http://www.hp.com/rnd/pdfs/RGMIIv1_3.pdf
http://www.hp.com/rnd/pdfs/RGMIIv1_3.pdf
http://www.hp.com/rnd/pdfs/RGMIIv1_3.pdf
http://www.hp.com/rnd/pdfs/RGMIIv2_0_final_hp.pdf

23 FPGA Board Customization

23-6

JTAG Connection Requirements for FPGA-in-the-Loop

• “Hardware” on page 23-6
• “Software” on page 23-6

Hardware

• Altera FPGA board
• USB Blaster I or USB Blaster II download cable

Software

• Altera Quartus II

• Windows®

Requires Quartus II version 13.0 or higher, Quartus II executable directory must
be on system path

• Linux®

Requires Quartus II version 13.1 or higher, Quartus II library directory must be on
LD_LIBRARY_PATH before starting MATLAB, only 64-bit Quartus are supported

• Installation of USB Blaster I or II cable driver

 Create Custom FPGA Board Definition

23-7

Create Custom FPGA Board Definition

1 Be ready with the following:

a Board specification document. Any format you are comfortable with is fine, but
if you have it in an electronic version, you can search for the information as it is
required.

b If you plan to validate (test) your board definition file, set up FPGA design
software tools:

For validation, you must have Xilinx or Altera on your path. Use the function
hdlsetuptoolpath to configure the tool for use with MATLAB. For example:
hdlsetuptoolpath('ToolName','Xilinx ISE','ToolPath','C:\Xilinx\13.4\ISE_DS\ISE\bin\nt64\ise.exe');

2 Open the FPGA Board Manager by typing fpgaBoardManager in the MATLAB
command window. Alternatively, if you are using the HDL Workflow Advisor, you
can click Launch Board Manager at Step 1.1.

3 Open the New FPGA Board Wizard by clicking Create New Board. For a
description of all the tasks you can perform with the FPGA Board Manager, see
“FPGA Board Manager” on page 23-21.

4 The wizard guides you through entering all board information. At each page, fill in
the required fields. For assistance in entering board information, see “New FPGA
Board Wizard” on page 23-25.

5 Save the board definition file. This is the last step and is automatically instigated
when you click Finish in the New FPGA Board Wizard. See “Save Board Definition
File” on page 23-17.

Your custom board definition now appears in the list of available FPGA Boards in the
FPGA Board Manager. If you are using HDL Workflow Advisor, it also shows in the
Target platform list.

Follow the example “Create Xilinx KC705 Evaluation Board Definition File” on page
23-8 for a demonstration of adding a custom FPGA board with the New FPGA Board
Manager.

23 FPGA Board Customization

23-8

Create Xilinx KC705 Evaluation Board Definition File

In this section...

“Overview” on page 23-8
“What You Need to Know Before Starting” on page 23-8
“Start New FPGA Board Wizard” on page 23-9
“Provide Basic Board Information” on page 23-10
“Specify FPGA Interface Information” on page 23-12
“Enter FPGA Pin Numbers” on page 23-13
“Run Optional Validation Tests” on page 23-15
“Save Board Definition File” on page 23-17
“Use New FPGA Board” on page 23-18

Overview

For FPGA-in-the-Loop, you can use your own qualified FPGA board even if is not in the
pre-registered FPGA board list supplied by MathWorks. Using the New FPGA Board
Wizard, you can create a board definition file that describes your custom FPGA board.

In this example, you can follow the workflow of creating a board definition file for the
Xilinx KC705 evaluation board to use with FIL simulation.

What You Need to Know Before Starting

• You need to know the following types of information about the board:

• FPGA interface to the Ethernet PHY chip
• Clock pins names and numbers
• Reset pins names and numbers

In this example, the above information is supplied to you in this section. In general,
you can find this type of information in the board specification file. This example uses
the KC705 Evaluation Board for the Kintex-7 FPGA User Guide, published by Xilinx.

• For validation, you must have Xilinx or Altera on your path. Use the function
hdlsetuptoolpath to configure the tool for use with MATLAB. For example:

http://www.xilinx.com/support/documentation/boards_and_kits/ug810_KC705_Eval_Bd.pdf

 Create Xilinx KC705 Evaluation Board Definition File

23-9

hdlsetuptoolpath('ToolName','Xilinx ISE','ToolPath','C:\Xilinx\13.4\ISE_DS\ISE\bin\nt64\ise.exe');

• If you want to verify programming the FPGA board after you add its definition file,
you will need to have the custom board attached to your computer. However, having
the board connected is not necessary for creating the board definition file.

Start New FPGA Board Wizard

1 Start the FPGA Board Manager by entering the following command at the MATLAB
prompt:

>>fpgaBoardManager

2 Click Create Custom Board to open the New FPGA Board Wizard.

23 FPGA Board Customization

23-10

Provide Basic Board Information

1 In the Basic Information pane, enter the following information:

 Create Xilinx KC705 Evaluation Board Definition File

23-11

• Board Name: Enter "My Xilinx KC705 Board"
• Vendor: Select Xilinx
• Family: Select Kintex7
• Device: Select xc7k325t
• Package: Select ffg900
• Speed: Select -2
• JTAG Chain Position: Select 1

The wizard should now look like the following image.

23 FPGA Board Customization

23-12

The information you just entered can be found in the KC705 Evaluation Board for
the Kintex-7 FPGA User Guide.

2 Click Next.

Specify FPGA Interface Information

1 In the Interfaces pane, perform the following tasks.

a Select FIL Interface. This option is required for using your board with FPGA-
in-the-Loop.

b Select GMII in the PHY Interface Type. This option indicates that the onboard
FPGA is connected to the Ethernet PHY chip via a GMII interface.

c Leave the User-defined I/O option in the FPGA Turnkey Interface section
unchecked. FPGA Turnkey workflow is not the focus of this example.

d Clock Frequency: Enter 200. Note that this Xilinx KC705 board has multiple
clock sources. This 200 MHz clock is one of the recommended clock frequencies
for use with Ethernet interface (50, 100, 125, and 200 MHz).

e Clock Type: Select Differential.
f Clock_P Pin Number: Enter AD12.
g Clock_N Pin Number: Enter AD11.
h Resent Pin Number: Enter AB7. This will supply a global reset to the FPGA.
i Active Level: Select Active-High.

You can obtain all necessary information from the board design specification.

The wizard should now look like the following image.

http://www.xilinx.com/support/documentation/boards_and_kits/ug810_KC705_Eval_Bd.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug810_KC705_Eval_Bd.pdf

 Create Xilinx KC705 Evaluation Board Definition File

23-13

2 Click Next.

Enter FPGA Pin Numbers

1 In the FILI/O pane, enter the numbers for each FPGA pin. This information is
required.

Note that pin numbers for RXD and TXD signals are entered from the least
significant digit (LSD) to the most significant digit (MSB), separated by a comma.

23 FPGA Board Customization

23-14

For signal name... Enter FPGA pin number...

ETH_COL W19
ETH_CRS R30
ETH_GTXCLK K30
ETH_MDC R23
ETH_MDIO J21
ETH_RESET_n L20
ETH_RXCLK U27
ETH_RXD U30,U25,T25,U28,R19,T27,T26,T28
ETH_RXDV R28
ETH_RXER V26
ETH_TXD N27,N25,M29,L28,J26,K26,L30,J28
ETH_TXEN M27
ETH_TXER N29

2 Click Advanced Options to expand the section.
3 Check the Generate MDIO module to override PHY settings option.

This option is selected for the following reasons:

• There are jumpers on the Xilinx KC705 board that configure the Ethernet PHY
device to MII, GMII, RGMII, or SGMII mode. Since this example uses the GMII
interfaces, the FPGA board will not work if the PHY device are set to the wrong
mode. When the Generate MDIO module to override PHY settings option
is selected, the FPGA uses the Management Data Input/Output (MDIO) bus to
override the jumper settings and configure the PHY chip to the correct GMII
mode.

• This option currently only applies to Marvell Alaska PHY device 88E1111 and
this KC705 board is using the Marvel device.

4 PHY address (0 – 31): Enter 7.

The wizard should now look like the following image.

 Create Xilinx KC705 Evaluation Board Definition File

23-15

5 Click Next.

Run Optional Validation Tests

This step provides a validation test for you to verify if the entered information is correct
by performing FPGA-in-the-Loop cosimulation. You will need Xilinx ISE 13.4 or higher
versions installed on the same computer. This step is optional and you may skip it if you
prefer.

Note: For validation, you must have Xilinx or Altera on your path. Use the function
hdlsetuptoolpath to configure the tool for use with MATLAB. For example:

23 FPGA Board Customization

23-16

hdlsetuptoolpath('ToolName','Xilinx ISE','ToolPath','C:\Xilinx\13.4\ISE_DS\ISE\bin\nt64\ise.exe');

To run this test, perform the following actions.

1 Check the Run FPGA-in-the-Loop test option.
2 If you have the board attached, check the Include FPGA board in the test option.

You will need to supply the IP address of the FPGA Board. This example assumes
the Xilinx KC705 board is attached to your host computer and it has an IP address of
192.168.0.2.

3 Click Run Selected Test(s). The tests will take about 10 minutes to complete.

 Create Xilinx KC705 Evaluation Board Definition File

23-17

Save Board Definition File

1 Click Finish to exit the New FPGA Board Wizard. A Save As dialog pops up and
asks for the location of the FPGA board definition file. For this example, save as C:
\boardfiles\KC705.xml.

2 Click Save to save the file and exit.

23 FPGA Board Customization

23-18

Use New FPGA Board

1 After you save the board definition file, you are returned to the FPGA Board
Manager. In the FPGA Board List you can now see the new board you just defined.

Click OK to close the FPGA Board Manager.
2 You can view the new board in the board list from either the FIL Wizard or the HDL

Workflow Advisor.

a Start the FIL Wizard from the MATLAB prompt.

>>filWizard

The Xilinx KC705 board appears in the board list and you can select it for
FPGA-in-the-Loop simulation.

 Create Xilinx KC705 Evaluation Board Definition File

23-19

b Start HDL Workflow Advisor.

In step 1.1, select FPGA-in-the-Loop and click Launch Board Manager.

The Xilinx KC705 board appears in the board list and you can select it for
FPGA-in-the-Loop simulation.

23 FPGA Board Customization

23-20

This concludes the example of adding a custom board definition file.

 FPGA Board Manager

23-21

FPGA Board Manager

In this section...

“Introduction” on page 23-21
“Filter” on page 23-23
“Search” on page 23-23
“FIL Enabled/Turnkey Enabled” on page 23-23
“Create Custom Board” on page 23-23
“Add Board From File” on page 23-23
“Get More Boards” on page 23-23
“View/Edit” on page 23-24
“Remove” on page 23-24
“Clone” on page 23-24
“Validate” on page 23-24

Introduction

The FPGA Board Manager is the portal to managing custom FPGA boards. You can
create a new board definition file or edit an existing one. You can even import a custom
board from an existing board definition file.

You start the FPGA Board Manager by one of the following methods:

• By typing fpgaBoardManager in the MATLAB command window
• From the FIL Wizard by clicking Launch Board Manager on the first page
• From the HDL Workflow Advisor (when using HDL Coder) at Step 1.1

23 FPGA Board Customization

23-22

 FPGA Board Manager

23-23

Filter

Choose one of the following views:

• All boards
• Only those that were preinstalled with HDL Verifier or HDL Coder
• Only custom boards

Search

Find a specific board in the list or those boards that fully or partially match your search
string.

FIL Enabled/Turnkey Enabled

These columns indicate whether the specified board is supported for FIL or Turnkey
operations.

Create Custom Board

Start New FPGA Board Wizard. See “New FPGA Board Wizard” on page 23-25. You
can find he process for creating a new board definition file in “Create Custom FPGA
Board Definition” on page 23-7.

Add Board From File

Import a board definition file (.xml).

Get More Boards

Download FPGA board support packages for use with FIL

1 Click Get more boards.
2 Follow the prompts in the Support Package Installer to download an FPGA board

support package.
3 When the download is complete, you can see the new boards in the board list in the

FPGA Board Manager.

23 FPGA Board Customization

23-24

View/Edit

View board configurations and modify the information. You may view a read-only file but
not edit it. See “FPGA Board Editor” on page 23-36.

Remove

Remove custom board from the list. This action does not delete the board definition XML
file.

Clone

Makes a copy of an existing custom board for further modification.

Validate

Runs the validation tests for FIL See “Run Optional Validation Tests” on page 23-15.

 New FPGA Board Wizard

23-25

New FPGA Board Wizard

Using the New FPGA Board Wizard, you can enter all the required information needed to
add a board to the FPGA board list. This list applies to both FIL and Turnkey workflows.
Review “FPGA Board Requirements” on page 23-2 before adding a new FPGA board to
make sure it is compatible with the workflow for which you want to use it.

Several buttons in the New FPGA Board Wizard assist in navigation:

• Back: Go to a previous page to review or edit data already entered.
• Next: Go to next page when all requirements of current page have been satisfied.
• Help: Open Doc Center, and display this topic.
• Cancel: Exit New FPGA Board Wizard. You have the option to exit with or without

saving the information from your session.

Adding Boards Once for Multiple Users To add new boards globally, follow these
instructions. Note that to access a board added globally, all users must be using the same
MATLAB installation.

1 Create the following folder:
matlabroot/toolbox/shared/eda/board/boardfiles

2 Copy the board description XML file to the boardfiles folder.
3 After copying the XML file, restart MATLAB. The new board appears in the FPGA

board list for either or both the FIL and Turnkey workflows.

All boards under this directory will show-up in the FPGA board list automatically for
users with the same MATLAB installation. You do not need to use FPGA Board Manager
to add these boards again.

The workflow for adding a new FPGA board contains these steps:

In this section...

“Basic Information” on page 23-26
“Interfaces” on page 23-27
“FIL I/O” on page 23-28

23 FPGA Board Customization

23-26

In this section...

“Turnkey I/O” on page 23-30
“Validation” on page 23-33
“Finish” on page 23-35

Basic Information

Board Name: Enter a unique board name.

Device Information:

• Vendor: Xilinx or Altera

 New FPGA Board Wizard

23-27

• Family: Family depends on the specified vendor. See the board specification file for
applicable settings.

• Device: Use the board specification file to select the correct device.
• For Xilinx boards only:

• Package: Use the board specification file to select the correct package.
• Speed: Use the board specification file to select the correct speed.
• JTAG Chain Position: Value indicates the starting position for JTAG chain.

Consult the board specification file for this information.

Interfaces

23 FPGA Board Customization

23-28

• FIL Interface: To use this board with FIL, select this option. Next, select one of the
following PHY Interface types:

• Gigabit Ethernet — GMII
• Gigabit Ethernet — RGMII
• Gigabit Ethernet — SGMII (the SGMII option appears if you select a board from

the Stratix Vor Stratix IV device families)
• Ethernet — MII
• Altera JTAG (Altera boards only)

Note: Not all interfaces are available for all boards. Availability depends on the board
you selected in Basic Information.

• FPGA Turnkey Interface: If you want to use with board with the HDL Coder FPGA
Turnkey workflow, select User-defined I/O.

• FPGA Input Clock. Clock details are required for both workflows. You can find all
necessary information in the board specification file.

• Clock Frequency. Must be between 5 and 300. For an Ethernet interface, the
suggested clock frequencies are 50, 100, 125, and 200 MHz.

• Clock Pin Number . Must be specified. Example: N10.
• Clock Type : Single_Ended or Differential.

• Reset (Optional). If you want to indicate a reset, find the pin number and active
level in the board specification file, and enter that information.

• Reset Pin Number. Leave empty if you do not have one.
• Active Level : Active-Low or Active-High.

FIL I/O

 New FPGA Board Wizard

23-29

Note: You provide FIL I/O for an Ethernet connection only.

Signal List: You must provide all the FPGA pin numbers for the specified signals. You
can find this information in the board specification file. For vector signals, list all pin
numbers on the same line, separated by commas.

Generate MDIO module to override PHY settings: See the next section on FPGA
Board Management Data Input/Output Bus (MDIO) to determine when to use this
feature. If you do select this option, enter the PHY address.

23 FPGA Board Customization

23-30

What is the Management Data Input/Output Bus (MDIO)?

Management Data Input/Output (MDIO) is a serial bus, defined in the IEEE 802.3
standard, that connects MAC devices and Ethernet PHY devices. The FPGA MAC uses
the MDIO bus to set control registers in the Ethernet PHY device on the board.

Currently only the Marvell 88E1111 PHY chip is supported by this MDIO module
implementation. Do not select this checkbox if you are not using Marvell 88E1111.

The generated MDIO module is used to perform the following operations:

• GMII mode: The PHY device can start up using other modes, such as RGMII/SGMII.
The generated MDIO module sets the PHY chip in GMII mode.

• RGMII mode: The PHY device can start up using other modes, such as GMII/SGMII.
The generated MDIO module sets the PHY device in RGMII mode. In addition, the
module sets the PHY chip to add internal delay for RX and TX clocks.

• SGMII mode: The PHY device can start up using other modes, such as RGMII/GMII.
The generated MDIO module sets the PHY chip in SGMII mode.

• MII mode: The generated MDIO module sets the PHY device in GMII compatible
mode. The module also sets the autonegotiation register to remove the 1000 Base-T
capability advertisement. This reset ensures that the autonegotiation process does not
select 1000 Mbits/s speed, which is not supported in MII mode.

When To Select MDIO: Select the Generate MDIO module to override PHY
settings option when both the following conditions are met:

• The onboard Ethernet PHY device is Marvell 88E1111.
• The PHY device startup settings are not compatible with the FPGA MAC. The

MDIO modules for different PHY modes must override these settings, as previously
described.

Specifying the PHY Address: The PHY address is a 5-bit integer. The value is
determined by the CONFIG[0] and CONFIG[1] pin on Marvell 88E1111 PHY device. See
the board manual for this value.

Turnkey I/O

 What is the Management Data Input/Output Bus (MDIO)?

23-31

Note: You provide FIL I/O for an Ethernet connection only. You must define at least one
output port for the Turnkey I/O interface.

Signal List: You must provide all the FPGA pin numbers for the specified signals. You
can find this information in the board specification file. For vector signals, list all pin
numbers on the same line, separated by commas. The number of pin numbers must
match the bit width of the corresponding signal.

Add New: You are prompted to enter all entries in the signal list manually.

23 FPGA Board Customization

23-32

Add Using Template: The wizard prepopulates a new signal entry for UART, LED,
GPIO, or DIP Switch signals with the following:

• A generic signal name
• Description
• Direction
• Bit width

You may change the values in any of these prepopulated fields.

Delete: Delete the selected signal from list.

The following example demonstrates using the Add Using Template feature.

1 In the Turnkey I/O dialog, click Add Using Template.
2 You can now view the template dialog.

3 Pull down the I/O list and select from the following options:

4 Click OK.
5 The wizard adds the specified signal (or signals) to the I/O list.

 What is the Management Data Input/Output Bus (MDIO)?

23-33

Validation

23 FPGA Board Customization

23-34

FPGA-in-the-Loop Test

• Run FPGA-in-the-Loop test: Select to generate an FPGA programming file.

• Include FPGA board in the test: (Optional) This selection program the FPGA
with the generated programming file, detects the Ethernet connection (if selected),
and performs FPGA-in-the-Loop simulation.

• Board IP address: (Ethernet connection only) Use this option for setting the
board's IP address if it is not the default IP address (192.168.0.2).

You may need to change your computer’s IP address to a different subnet from
192.168.0.x when you set up the network adapter. You would also need to change

 What is the Management Data Input/Output Bus (MDIO)?

23-35

the address if the default board IP address 192.168.0.2 is in use by another device..
If so, change the Board IP address according to the following guidelines:

• The subnet address, typically the first three bytes of board IP address, must be
the same as those of the host IP address.

• The last byte of the board IP address must be different from that of the host IP
address.

• The board IP address must not conflict with the IP addresses of other
computers.

For example, if the host IP address is 192.168.8.2, then you can use
192.168.8.3, if available.

FPGA Turnkey Test

• Run FPGA Turnkey test: Select to generate an FPGA programming file using an
HDL design that contains a counter. You must have a board attached.

• Select output LED: The counter output is connected with the LED you select. Skip
this test if you do not have an LED output.

Finish

When you have completed validation, click Finish. See “Save Board Definition File” on
page 23-17.

23 FPGA Board Customization

23-36

FPGA Board Editor

To edit a board definition XML file, you must first make it writeable. If the file is read-
only, the FPGA Board Editor only lets you view the board configuration information. You
cannot modify that information.

In this section...

“General” on page 23-36
“Interface” on page 23-38

General

 FPGA Board Editor

23-37

Board Name: Unique board name

Device Information:

• Vendor: Xilinx or Altera
• Family: Family depends on the specified vendor. See the board specification file for

applicable settings.
• Device: Device depends on the specified vendor and family. See the board

specification file for applicable settings.
• For Xilinx boards only:

• Package: Package depends on specified vendor, family, and device. See the board
specification file for applicable settings.

• Speed: Speed depends on package. See the board specification file for applicable
settings.

• JTAG Chain Position: Value indicates the starting position for JTAG chain.
Consult the board specification file for this information.

• FPGA Input Clock. Clock details are required for both the FIL and Turnkey
workflows. You can find all necessary information in the board specification file.

• Clock Frequency. Must be between 5 and 300. For an Ethernet interface, the
suggested clock frequencies are 50, 100, 125, and 200 MHz.

• Clock Pin Number . Must be specified. Example: N10.
• Clock Type : Single_Ended or Differential.

• Reset (Optional). If you want to indicate a reset, find the pin number and active
level in the board specification file, and enter that information.

• Reset Pin Number. Leave empty if you do not have one.
• Active Level : Active-Low or Active-High.

23 FPGA Board Customization

23-38

Interface

The Interface page describes the supported FPGA I/O Interfaces. Select any listed
interface and click View to see the Signal List. If the board definition file has write
permission, you can also Add New interface or Remove an interface.

24

HDL Workflow Advisor Tasks

24 HDL Workflow Advisor Tasks

24-2

HDL Workflow Advisor Tasks

In this section...

“HDL Workflow Advisor Tasks Overview” on page 24-3
“Set Target Overview” on page 24-4
“Set Target Device and Synthesis Tool” on page 24-5
“Set Target Library” on page 24-6
“Set Target Interface” on page 24-6
“Set Target Frequency” on page 24-7
“Set Target Interface” on page 24-7
“Set Target Interface” on page 24-8
“Prepare Model For HDL Code Generation Overview” on page 24-9
“Check Global Settings” on page 24-10
“Check Algebraic Loops” on page 24-10
“Check Block Compatibility” on page 24-11
“Check Sample Times” on page 24-11
“Check FPGA-in-the-Loop Compatibility” on page 24-12
“HDL Code Generation Overview” on page 24-12
“Set Code Generation Options Overview” on page 24-12
“Set Basic Options” on page 24-13
“Set Advanced Options” on page 24-13
“Set Testbench Options” on page 24-14
“Generate RTL Code and Testbench” on page 24-14
“Generate RTL Code and IP Core” on page 24-15
“FPGA Synthesis and Analysis Overview” on page 24-16
“Create Project” on page 24-17
“Perform Synthesis and P/R Overview” on page 24-17
“Perform Logic Synthesis” on page 24-18
“Perform Mapping” on page 24-18
“Perform Place and Route” on page 24-19

 HDL Workflow Advisor Tasks

24-3

In this section...

“Run Synthesis” on page 24-19
“Run Implementation” on page 24-20
“Annotate Model with Synthesis Result” on page 24-20
“Download to Target Overview” on page 24-21
“Generate Programming File” on page 24-21
“Program Target Device” on page 24-22
“Generate Simulink Real-Time Interface” on page 24-22
“Save and Restore HDL Workflow Advisor State” on page 24-22
“FPGA-in-the-Loop Implementation” on page 24-22
“Set FIL Options” on page 24-22
“Build FPGA-in-the-Loop” on page 24-23

“Check USRP® Compatibility” on page 24-23
“Verify with HDL Cosimulation” on page 24-24
“Generate FPGA Implementation” on page 24-24
“Check SDR Compatibility” on page 24-24
“SDR FPGA Implementation” on page 24-24
“Set SDR Options” on page 24-25
“Build SDR” on page 24-26
“Embedded System Integration” on page 24-26
“Create Project” on page 24-27
“Generate Software Interface Model” on page 24-27
“Build FPGA Bitstream” on page 24-27
“Program Target Device” on page 24-28

HDL Workflow Advisor Tasks Overview

The HDL Workflow Advisor is a tool that supports a suite of tasks covering the stages
of the FPGA design process. Some tasks perform model validation or checking; others
run the HDL code generator or third-party tools. Each folder at the top level of the HDL
Workflow Advisor contains a group of related tasks that you can select and run:

24 HDL Workflow Advisor Tasks

24-4

• Set Target: The tasks in this category enable you to select the desired target device
and map its I/O interface to the inputs and outputs of your model.

Prepare Model For HDL Code Generation: The tasks in this category check
your model for HDL code generation compatibility. The tasks also report on model
settings, blocks, or other conditions (such as algebraic loops) that would impede code
generation, and provide advice on how to fix such problems.

• HDL Code Generation: This category supports all HDL-related options of the
Configuration Parameters dialog, including setting HDL code and test bench
generation parameters, and generating code, test bench, or a cosimulation model.

• FPGA Synthesis and Analysis: The tasks in this category support:

• Synthesis and timing analysis through integration with third-party synthesis tools
• Back annotation of the model with critical path and other information obtained

during synthesis
• FPGA-in-the-Loop Implementation: This category implements the phases of

FIL, including providing block generation, synthesis, logical mapping, PAR (place-
and-route), programming file generation, and a communications channel. These
capabilities are specifically designed for a particular board and tailored to your RTL
code. An HDL Verifier license is required for FIL.

• Download to Target: The tasks in this category depend on the selected target device
and might include:

• Generation of a target-specific FPGA programming file
• Programming the target device
• Generation of a model that contains a Simulink Real-Time interface subsystem

See Also

For summary information on each HDL Workflow Advisor folder or task, select the folder
or task icon and then click the HDL Workflow Advisor Help button.

Set Target Overview

The tasks in the Set Target folder enable you to select a target FPGA device and define
the I/O interface to be generated for the device. The Set Target folder contains the
following tasks:

 HDL Workflow Advisor Tasks

24-5

• Set Target Device and Synthesis Tool: Select a target FPGA device and synthesis
tools.

• Set Target Interface: Use the Target Platform Interface Table to assign each port
on your DUT to an I/O resource on the target device.

See Also

For summary information on each Set Target task, select the task icon and then click
the HDL Workflow Advisor Help button.

Set Target Device and Synthesis Tool

Set Target Device and Synthesis Tool enables you to select an FPGA target device
and an associated synthesis tool from a pulldown menu that lists the devices that HDL
Workflow Advisor currently supports.

Description

This task displays the following options:

• Target Workflow: A pulldown menu that lists the possible workflows that HDL
Workflow Advisor supports. Choose from:

• Generic ASIC/FPGA
• FPGA-in-the-Loop
• FPGA Turnkey
• Simulink Real-Time FPGA I/O
• IP Core Generation
• Customization for an SDR Platform

• Target platform: A pulldown menu that lists the devices the HDL Workflow Advisor
currently supports. Not available for the Generic ASIC/FPGA workflow.

• Synthesis tool: Select a synthesis tool, then select the Family, Device, Package,
and Speed for your synthesis target. Select a Xilinx or Altera tool to make the Set
Target Library (for floating-point synthesis support) option available.

If your synthesis tool is not one of the Synthesis tool options, see “Synthesis Tool
Path Setup”. After you set up your synthesis tool path, click Refresh to make the tool
available in the HDL Workflow Advisor.

24 HDL Workflow Advisor Tasks

24-6

• Project folder: Specify the project folder name.
• Set Target Library (for floating-point synthesis support): Select to map to

an FPGA target-specific floating-point library. Enabling this option causes the
Set Target Library task to appear on the left. This option is not available if your
synthesis tool is Xilinx Vivado.

See Also

For information on the Set Target Library task, see “Set Target Library” on page
24-6.

Set Target Library

Target library: The selected FPGA floating-point target library.

Objective: Choose to optimize your generated HDL code for Speed or Area.

Block latencies: Select the block latencies to use.

Set Xilinx simulation path: Select to enter the location of your pre-compiled Xilinx
simulation library (xilinxcorelib). Do not select this option if you wish HDL Coder to
automatically detect the location of the simulation library. This option is available only
if you selected a Xilinx synthesis tool in the Set Target Device and Synthesis Tool
task. If the pre-compiled Xilinx simulation library is unavailable, HDL Coder issues a
warning.

Absolute path: Enter the location of the simulation library. This option is available if
Set Xilinx simulation path is selected.

See Also

For more information on targeting FPGA floating-point library blocks, see “Map to an
FPGA Floating-Point Library”.

Set Target Interface

Set Target Interface displays properties of input and output ports on your model, and
enables you to map these ports to I/O resources on the target device.

Description

Set Target Interface displays the Target Platform Interface Table, which shows:

 HDL Workflow Advisor Tasks

24-7

• The name, port type (input or output), and data type for each port on your model
• A pulldown menu listing the available I/O resources for the target device

These resources are device-specific. For detailed information on each resource, see the
documentation for your FPGA development board.

Set Target Frequency

Automatically generate clock module for FPGA Turnkey or Simulink Real-Time FPGA I/
O targets.

Leave entry unchanged if you wish to use the default value (same as input).

Set Target Interface

Select a processor-FPGA synchronization mode, and map your model’s input and output
ports to I/O resources on the target device.

Description

For Processor/FPGA synchronization, select:

• Free running if you do not want your processor and FPGA to be automatically
synchronized.

• Coprocessing – blocking if you want HDL Coder to automatically generate
synchronization logic for the FPGA so that the processor and FPGA run in tandem.
Select this mode when FPGA execution time is short relative to the processor sample
time, and you want the FPGA to complete before the processor continues.

• Coprocessing – nonblocking with delay (not supported for IP Core
Generation workflow) if you want HDL Coder to automatically generate
synchronization logic for the FPGA so that the processor and FPGA run in tandem.
Select this mode when the FPGA processing time is long relative to the processor
sample time, or you do not want the processor to wait for the FPGA to finish before
the processor continues.

The Target Platform Interface Table shows:

• The name, port type (input or output), and data type for each port on your model.
• A pulldown menu listing the available I/O resources for the target device.

24 HDL Workflow Advisor Tasks

24-8

These resources are device-specific. For detailed information on each resource, see the
documentation for your FPGA development board.

See Also

• “Processor and FPGA Synchronization”
• “Custom IP Core Generation”
• “Generate Simulink Real-Time Interface for Speedgoat Boards”

Set Target Interface

Select a processor-FPGA synchronization mode, and map your model’s input and output
ports to I/O resources on the target device. Optionally, specify a reference design.

Description

Reference design: Select the predefined embedded system integration project into
which HDL Coder inserts your generated IP core.

Reference design path: Enter the path to your downloaded reference design
components. This field is available only if the specified Reference design requires
downloadable components.

For Processor/FPGA synchronization, select:

• Free running if you do not want your processor and FPGA to be automatically
synchronized.

• Coprocessing – blocking if you want HDL Coder to automatically generate
synchronization logic for the FPGA so that the processor and FPGA run in tandem.
Select this mode when FPGA execution time is short relative to the processor sample
time, and you want the FPGA to complete before the processor continues.

• Coprocessing – nonblocking with delay (not supported for IP Core
Generation workflow) if you want HDL Coder to automatically generate
synchronization logic for the FPGA so that the processor and FPGA run in tandem.
Select this mode when the FPGA processing time is long relative to the processor
sample time, or you do not want the processor to wait for the FPGA to finish before
the processor continues.

The Target Platform Interface Table shows:

 HDL Workflow Advisor Tasks

24-9

• The name, port type (input or output), and data type for each port on your model.
• A dropdown menu listing the available I/O resources for the target device.

These resources are device-specific. For detailed information on each resource, see the
documentation for your FPGA development board.

See Also

• “Processor and FPGA Synchronization”
• “Custom IP Core Generation”
• “Generate Simulink Real-Time Interface for Speedgoat Boards”

Prepare Model For HDL Code Generation Overview

The tasks in the Prepare Model For HDL Code Generation folder check the model
for compatibility with HDL code generation. If a check encounters a condition that would
raise a code generation warning or error, the right pane of the HDL Workflow Advisor
displays information about the condition and how to fix it. The Prepare Model For
HDL Code Generation folder contains the following checks:

• Check Global Settings: Check model parameters for compatibility with HDL code
generation.

• Check Algebraic Loops: Check the model for algebraic loops.
• Check Block Compatibility: Check that blocks in the model support HDL code

generation.
• Check Sample Times: Check the solver options, tasking mode, and rate transition

diagnostic settings, given the model's sample times.
• Check FPGA-in-the-Loop Compatibility: Check model compatibility with FPGA-

in-the-Loop, specifically:

• Not allowed: sink/source subsystems, single/double data types, zero sample time
• Must be present: HDL Verifier license

This option is available only if you select FPGA-in-the-Loop for Target workflow.
• Check USRP Compatibility: The model must have 2 input ports and 2 output ports

of signed 16-bit signals.

This option is available only if you select Customization for the USRP(TM)
Device for Target workflow.

24 HDL Workflow Advisor Tasks

24-10

See Also

For summary information on each Prepare Model For HDL Code Generation task,
select the task icon and then click the HDL Workflow Advisor Help button.

Check Global Settings

Check Global Settings checks model-wide parameter settings for HDL code generation
compatibility.

Description

This check examines the model parameters for compatibility with HDL code generation
and flags conditions that would raise an error or a warning during code generation.
The HDL Workflow Advisor displays a table with the following information about each
condition detected:

• Block: Hyperlink to the model configuration dialog page that contains the error or
warning condition

• Settings: Name of the model parameter that caused the error or warning condition
• Current: Current value of the setting
• Recommended: Recommended value of the setting
• Severity: Severity level of the warning or error condition. Minimally, you should fix

settings that are tagged as error.

Tip

To set reported settings to their recommended values, click the Modify All button. You
can then run the check again and proceed to the next check.

Check Algebraic Loops

Detect algebraic loops in the model.

Description

TheHDL Coder software does not support HDL code generation for models in which
algebraic loop conditions exist. Check Algebraic Loops examines the model and fails

 HDL Workflow Advisor Tasks

24-11

the check if it detects an algebraic loop. You should eliminate algebraic loops from your
model before proceeding with further HDL Workflow Advisor checks or code generation.

See Also

For information about algebraic loops, see “Algebraic Loops” in the Simulink
documentation.

Check Block Compatibility

Check the DUT for unsupported blocks.

Description

Check Block Compatibility checks blocks within the DUT for compatibility with HDL
code generation. The check fails if it encounters blocks that HDL Coder does not support.
The HDL Workflow Advisor reports incompatible blocks, including the full path to each
block.

See Also

See “Generate a Library of Supported Blocks” for a complete list of supported blocks and
their implementations.

Check Sample Times

Check the solver, sample times, and tasking mode settings for the model.

Description

Check Sample Times checks the solver options, sample times, tasking mode, and rate
transition diagnostics for HDL code generation compatibility. Solver options that the
HDL Coder software requires or recommends are:

• Type: Fixed-step. (The coder currently supports variable-step solvers under limited
conditions. See hdlsetup for details.)

• Solver: Discrete (no continuous states). Other fixed-step solvers could be selected, but
this option is usually the best one for simulating discrete systems.

• Tasking mode: SingleTasking. The coder does not currently support models that
execute in multitasking mode. Do not set Tasking mode to Auto.

24 HDL Workflow Advisor Tasks

24-12

• Multitask rate transition and Single task rate transition diagnostic options: set
to Error.

Check FPGA-in-the-Loop Compatibility

HDL Verifier checks model for compatibility with FPGA-in-the-Loop processing.

See Also

For HDL code and model compatibilities with FPGA-in-the-Loop processing, see “Prepare
DUT For FIL Interface Generation”.

HDL Code Generation Overview

The tasks in the HDL Code Generation folder enable you to:

• Set and validate HDL code and test bench generation parameters. Most parameters of
the HDL Code Generation pane of the Configuration Parameters dialog box and the
Model Explorer are supported.

• Generate any or all of:

• RTL code
• RTL test bench
• Cosimulation model

To run the tasks in the HDL Code Generation folder automatically, select the folder
and click Run All.

Tip After each task in this folder runs, HDL Coder updates the Configuration Parameters
dialog box and the Model Explorer.

Set Code Generation Options Overview

The tasks in the Set Code Generation Options folder enable you to set and
validate HDL code and test bench generation parameters. Each task of the Set Code
Generation Options folder supports options of the HDL Code Generation pane of the
Configuration Parameters dialog box and the Model Explorer. The tasks are:

 HDL Workflow Advisor Tasks

24-13

• Set Basic Options: Set parameters that affect overall code generation. See “HDL
Code Generation Pane: General ” for information on each parameter.

• Set Advanced Options: Set parameters that specify detailed characteristics of the
generated code, such as HDL element naming and whether certain optimizations
apply. See “HDL Code Generation Pane: Global Settings ” for information on each
parameter.

• Set Testbench Options: Set options that determine characteristics of generated test
bench code. See “HDL Code Generation Pane: Test Bench ” for information on each
parameter.

To run the tasks in the Set Code Generation Options folder automatically, select the
folder and click Run All.

Set Basic Options

Set parameters that affect overall code generation.

Description

The Set Basic Options task sets options that are fundamental to HDL code generation.
These options include selecting the DUT and selecting the target language. The basic
options are the same as those found in the top-level HDL Code Generation pane of the
Configuration Parameters dialog box, except that the Code generation output group is
omitted.

See Also

See also “HDL Code Generation Pane: General ”.

Set Advanced Options

Set parameters that specify detailed characteristics of the generated code.

Description

The advanced options are the same as those found in the HDL Code Generation
> Global Settings pane of the Configuration Parameters dialog box and the Model
Explorer.

See Also

See also “HDL Code Generation Pane: Global Settings” on page 10-16.

24 HDL Workflow Advisor Tasks

24-14

Set Testbench Options

Set options that determine characteristics of generated test bench code.

Description

The test bench options are the same as those found in the HDL Code Generation >
Test Bench pane of the Configuration Parameters dialog box and the Model Explorer.

See Also

See also “HDL Code Generation Pane: Test Bench ”.

Generate RTL Code and Testbench

Select and initiate generation of RTL code, RTL test bench, and cosimulation model.

Description

The Generate RTL Code and Testbench task enables choosing what type of code or
model that you want to generate. You can select any combination of the following:

• Generate RTL code: Generate RTL code in the target language.
• Generate RTL testbench: Generate an RTL test bench in the target language.
• Generate cosimulation model (requires HDL Verifier): Generate a cosimulation

model. Selecting this check box enables the next option.
• Cosimulation model for use with: Select one of the following options from the

menu:

• Mentor Graphics ModelSim: This option is the default. If your installation
includes HDL Verifier for use with Mentor Graphics ModelSim, HDL Coder
generates and opens a Simulink model that contains an HDL Cosimulation block
for Mentor Graphics ModelSim.

• Cadence Incisive: If your installation includes HDL Verifier for use with
Cadence Incisive, HDL Coder generates and opens a Simulink model that contains
an HDL Cosimulation block for Cadence Incisive.

• Generate validation model: Generate a validation model that highlights generated
delays and other differences between your original model and the generated
cosimulation model. With a validation model, you can observe the effects of streaming,
resource sharing, and delay balancing.

 HDL Workflow Advisor Tasks

24-15

The validation model contains the DUT from the original model and the DUT from
the generated cosimulation model. Using the validation model, you can verify that the
output of the optimized DUT is bit-true to the results produced by the original DUT.

• Generate FPGA top level wrapper: Generate an HDL code wrapper and a
constraint file that contains pin map information and clock constraints. When you
select a specific target device in the Set Target Device and Synthesis Tool task,
Generate FPGA top level wrapper is automatically selected. Generating this
wrapper enables generation of the corresponding programming file for the Generate
Programming File task in the Download to Target folder.

When you select Generate FPGA top level wrapper, the task Annotate Model
with Synthesis Result is not available in the FPGA Synthesis and Analysis
folder. To perform back-annotation analysis, clear the check box for Generate FPGA
top level wrapper.

See Also

See also “ Generating a Simulink Model for Cosimulation with an HDL Simulator”.

Generate RTL Code and IP Core

Select and initiate generation of RTL code and custom IP core.

Description

In the Generate RTL Code and IP Core task, specify characteristics of the generated
IP core:

• IP core name: Enter the IP core name.
• IP core version: Enter the IP core version number.

HDL Coder appends the version number to the IP core name to generate the output
folder name.

• IP core folder (not editable): HDL Coder generates the IP core files in the output
folder shown, including the HTML documentation.

• IP repository: If you have an IP repository folder, enter its path manually or
by using the Browse button. The coder copies the generated IP core into the IP
repository folder.

24 HDL Workflow Advisor Tasks

24-16

• Additional source files: If you are using a black box interface in your design to
include existing Verilog or VHDL code, enter the file names. Enter each file name
manually, separated with a semicolon (;), or by using the Add button. The source file
language must match your target language.

• Generate IP core report: Select this option to generate HTML documentation for
the IP core.

See Also

• “Custom IP Core Generation”
• “Generate a Board-Independent IP Core from Simulink”
• “Custom IP Core Report”

FPGA Synthesis and Analysis Overview

Create projects for supported FPGA synthesis tools, perform FPGA synthesis, mapping,
and place/route tasks, and annotate critical paths in the original model

Description

The tasks in the FPGA Synthesis and Analysis folder enable you to:

• Create FPGA synthesis projects for supported FPGA synthesis tools.
• Launch supported FPGA synthesis tools, using the project files to perform synthesis,

mapping, and place/route tasks.
• Annotate your original model with critical path information obtained from the

synthesis tools.

For a list of supported third-party synthesis tools, see “Third-Party Synthesis Tools”.

The tasks in the folder are:

• Create Project
• Perform Synthesis and P/R
• Annotate Model with Synthesis Result

See Also

See also “FPGA Synthesis and Analysis”.

 HDL Workflow Advisor Tasks

24-17

Create Project

Create FPGA synthesis project for supported FPGA synthesis tool.

Description

This task creates a synthesis project for the selected synthesis tool and loads the project
with the HDL code generated for your model.

Enter additional files you want included in your synthesis project. Enter each file name
manually, separated with a semicolon (;), or by using the Add button.

For example, you can include HDL source files (.vhd or .v), a constraint file (.ucf or .sdc),
or a Tcl script (.tcl) to execute after creating the project.

When the project creation completes, the HDL Workflow Advisor displays a link to the
project in the right pane. Click this link to view the project in the synthesis tool project
window.

For a list of supported third-party synthesis tools, see “Third-Party Synthesis Tools”.

See Also

See also “Creating a Synthesis Project”.

Perform Synthesis and P/R Overview

Launch supported FPGA synthesis tools to perform synthesis, mapping, and place/route
tasks.

Description

The tasks in the Perform Synthesis and P/R folder enable you to launch supported
FPGA synthesis tool and:

• Synthesize the generated HDL code.
• Perform mapping and timing analysis.
• Perform place and route functions.

For a list of supported third-party synthesis tools, see “Third-Party Synthesis Tools”.

24 HDL Workflow Advisor Tasks

24-18

See Also

See also “FPGA Synthesis and Analysis”

Perform Logic Synthesis

Launch supported FPGA synthesis tool and synthesize the generated HDL code.

Description

The Perform Logic Synthesis task:

• Launches the synthesis tool in the background.
• Opens the previously generated synthesis project, compiles HDL code, synthesizes the

design, and emits netlists and related files.
• Displays a synthesis log in the Result subpane.

See Also

See also “Performing Synthesis, Mapping, and Place and Route”.

Perform Mapping

Launches supported FPGA synthesis tool and maps the synthesized logic design to the
target FPGA.

Description

The Perform Mapping task:

• Launches the synthesis tool in the background.
• Runs a mapping process that maps the synthesized logic design to the target FPGA.
• Emits a circuit description file for use in the place and route phase.
• Also emits pre-routing timing information for use in critical path analysis and back

annotation of your source model.
• Displays a log in the Result subpane.

Enable Skip pre-route timing analysis if your tool does not support early timing
estimation. When this option is enabled, the Annotate Model with Synthesis Result
task sets Critical path source to post-route.

 HDL Workflow Advisor Tasks

24-19

See Also

See also “Performing Synthesis, Mapping, and Place and Route”.

Perform Place and Route

Launches the synthesis tool in the background and runs a Place and Route process.

Description

The Perform Place and Route task:

• Launches the synthesis tool in the background.
• Runs a Place and Route process that takes the circuit description produced by the

previous mapping process, and emits a circuit description suitable for programming
an FPGA.

• Also emits post-routing timing information for use in critical path analysis and back
annotation of your source model.

• Displays a log in the Result subpane.

Tips

If you select Skip this task , the HDL Workflow Advisor executes the workflow, but
omits the Perform Place and Route task, marking it Passed. You might want to
select Skip this task if you prefer to do place and route work manually.

If Perform Place and Route fails, but you want to use the post-mapping timing results
to find critical paths in your model, you can select Ignore place and route errors and
continue to the Annotate Model with Synthesis Result task.

See Also

See also “Performing Synthesis, Mapping, and Place and Route”.

Run Synthesis

Launches Xilinx Vivado and executes the Vivado Synthesis step.

Enable Skip pre-route timing analysis if you do not want to do early timing
estimation.

24 HDL Workflow Advisor Tasks

24-20

Run Implementation

Launches Xilinx Vivado and executes the Vivado Implementation step.

If you select Skip this task , the HDL Workflow Advisor omits the Run
Implementation task, marking it Passed. Select Skip this task if you prefer to do
place and route work manually.

If Run Implementation fails, you can select Ignore place and route errors and
continue to the Annotate Model with Synthesis Result task.

Check Timing Report

If there are timing failures during this task, the task does not fail. You must check the
timing report for timing failures.

Annotate Model with Synthesis Result

Analyzes pre- or post-routing timing information and visually highlights critical paths in
your model

Description

The Annotate Model with Synthesis Result task helps you to identify critical paths
in your model. At your option, the task analyzes pre- or post-routing timing information
produced by the Perform Synthesis and P/R task group, and visually highlights one or
more critical paths in your model.

If Generate FPGA top level wrapper is selected in the Generate RTL Code and
Testbench task, Annotate Model with Synthesis Result is not available. To perform
back-annotation analysis, clear the check box for Generate FPGA top level wrapper.

Input Parameters

Critical path source
Select pre-route or post-route.

The pre-route option is unavailable when Skip pre-route timing analysis is
enabled in the previous task group.

Critical path number

 HDL Workflow Advisor Tasks

24-21

You can annotate up to 3 critical paths. Select the number of paths you want to
annotate.

Show all paths
Show critical paths, including duplicate paths.

Show unique paths
Show only the first instance of a path that is duplicated.

Show delay data
Annotate the cumulative timing delay on each path.

Show ends only
Show the endpoints of each path, but omit the connecting signal lines.

Results and Recommended Actions

When the Annotate Model with Synthesis Result task runs to completion, HDL
Coder displays the DUT with critical path information highlighted.

See Also

“Annotating Your Model with Critical Path Information”

Download to Target Overview

The Download to Target folder supports the following tasks:

• Generate Programming File: Generate an FPGA programming file.
• Program Target Device: Download generated programming file to the target

development board.
• Generate Simulink Real-Time Interface (for Speedgoat target devices only):

Generate a model that contains a Simulink Real-Time interface subsystem.

See Also

For summary information on each Download to Target task, select the task icon and
then click the HDL Workflow Advisor Help button.

Generate Programming File

24 HDL Workflow Advisor Tasks

24-22

The Generate Programming File task generates an FPGA programming file that is
compatible with the selected target device.

Program Target Device

The Program Target Device task downloads the generated FPGA programming file to
the selected target device.

Before executing the Program Target Device task, make sure that your host PC is
properly connected to the target development board via the required programming cable.

Generate Simulink Real-Time Interface

The Generate Simulink Real-Time Interface task generates a model containing an
interface subsystem that you can plug in to a Simulink Real-Time model.

The naming convention for the generated model is:

gm_fpgamodelname_xpc.mdl

where fpgamodelname is the name of the original model.

Save and Restore HDL Workflow Advisor State

You can save the current settings of the HDL Workflow Advisor to a named restore point.
At a later time, you can restore the same settings by loading the restore point data into
the HDL Workflow Advisor.

See Also

For detailed information on how to create, save, and load a restore point, see “Save and
Restore HDL Workflow Advisor State ”.

FPGA-in-the-Loop Implementation

Set FIL options and run FIL processing.

Set FIL Options

 HDL Workflow Advisor Tasks

24-23

Set connection type, board IP and MAC addresses and select additional files, if required.

Connection

Select either JTAG (Altera boards only) or Ethernet.

Board IP Address

Use this option for setting the board's IP address if it is not the default IP address
(192.168.0.2).

Board MAC Address

Under most circumstances, you do not need to change the Board MAC address. You will
need to do so if you connect more than one FPGA development board to a single computer
(for which you must have a separate NIC for each board). You must change the Board
MAC address for additional boards so that each address is unique.

Additional Source Files

Select additional source files for the HDL design that is to be verified on the FPGA board,
if required. HDL Workflow Advisor will attempt to identify the file type; change the file
type in the File Type column if it is incorrect.

Build FPGA-in-the-Loop

During the build process, the following actions occur:

• FPGA-in-the-Loop generates a FIL block named after the top-level module and places
it in a new model.

• After new model generation, FIL opens a command window. In this window, the
FPGA design software performs synthesis, fit, place-and-route, timing analysis, and
FPGA programming file generation. When the process completes, a message in the
command window prompts you to close the window.

• FPGA-in-the-Loop builds a testbench model around the generated FIL block.

Check USRP® Compatibility

The model must have 2 input ports and 2 output ports of signed 16-bit signals.

24 HDL Workflow Advisor Tasks

24-24

Verify with HDL Cosimulation

Run this step to verify the generated HDL using cosimulation between the HDL
Simulator and the Simulink test bench.

Generate FPGA Implementation

This step initiates FPGA programming file creation. For Input Parameters, enter the
path to the Ettus Research™ USRP® FPGA files you previously downloaded. If you have
not yet downloaded these files, see the Support Package for USRP® Radio documentation.

When this step completes, see the instructions for downloading the programming file
to the FPGA and running the simulation in the Support Package for USRP® Radio
documentation for FPGA Targeting.

Check SDR Compatibility

The DUT must adhere to certain signal interface requirements. During Check SDR
Compatibility, the following interface checks are performed (Inputs and Outputs go
through the same checks).

• Must include single complex signal, two scalar signals, or single vectored signal of size
2

• Must have a bitwidth of 16
• Must be signed
• Must be single rate
• If have vectored ports must use Scalarize Vectors option
• If have multiple rates, must use Single clock
• Must use synchronous reset
• Must use active-high reset
• Must use a user overclocking factor of 1

All error checks are done for a given task run and reported in a table. This allows a single
iteration to fix all errors.

SDR FPGA Implementation

 HDL Workflow Advisor Tasks

24-25

The SDR FPGA integrates customer logic as generated in previous steps as well as SDR-
specific code to provide data and control paths between an RF board and the host.

This step consists of the following tasks:

• Set SDR Options: Choose customization options
• Build SDR: Generate FPGA programming file for an SDR target.

Set SDR Options

Choose customization options for the completion of the SDR FPGA implementation.

SDR FPGA Component Options

• RF board for target

Choose one of the following:

• Epic Bitshark FMC-1Rx RevB

• Epic Bitshark FMC-1Rx RevC

• Analog Devices AD FMCOMMS1–ABZ RevB

• Folder with vendor HDL source code

Specify the folder that contains the RF interface HDL downloaded from the vendor
support site. Use Browse to navigate to the correct folder.

• User logic synthesis frequency

Specify the maximum frequency at which you want to run your design. This value
must be greater than the sampling frequencies for ADC and DAC as specified in the
ADI FMCOMMS or Epiq Bitshark™ block.

• User logic data path

Select either the Receiver data path or the Transmitter data path.

Radio IP Addresses

• Board IP address

Set the board's IP address in this field if it is not the default IP address
(192.168.10.1).

24 HDL Workflow Advisor Tasks

24-26

• Board MAC address

Under most circumstances, you do not need to change the Board MAC address.
However, you need to do so if you connect more than one FPGA development board to
a single computer (for which you must have a separate NIC for each board). You must
change the Board MAC address for additional boards so that each address is unique.

Additional Source and Project Files for the HDL Design

Specify files you want included in the ISE or Vivado project. You should include only file
types supported by ISE or Vivado. If an included file does not exist, the HDL Workflow
Advisor cannot create the project.

• File: Name of file added to design (with Add).
• File Type: File type. The software will attempt to determine the file type

automatically, but you may override the selection. Options are VHDL, Verilog, EDIF
netlist, VQM netlist, QSF file, Constraints, and Others.

• Add: Add a new file to the list.
• Remove: Removes the currently selected file from the list.
• Up: Moves the currently selected file up the list.
• Down: Moves the currently selected file down the list.

Show full paths to source files (checkbox) triggers a full path display. Leaving this
box unchecked displays only the file name.

Build SDR

The HDL Workflow Advisor creates a new Xilinx ISE or Vivado project and adds the
following:

• All the necessary files from the FPGA repository
• The generated HDL files for the selected subsystem and algorithm

If no errors are found during FPGA project generation and syntax checking, the FPGA
programming file generation process starts. You can view this process in an external
command shell and monitor its progress. When the process is finished, a message in the
command window prompts you to close the window.

Embedded System Integration

 HDL Workflow Advisor Tasks

24-27

Tasks in this folder integrate your generated HDL IP core with the embedded processor.

Create Project

Create project for embedded system tool.

In the message window, after the project is generated, you can click the project link to
open the generated embedded system tool project.

Embedded System Tool Input
Parameter

Description

Embedded system tool Embedded design tool.
Project folder Folder where your generated project files are saved.

Generate Software Interface Model

Generate a software interface model with IP core driver blocks for embedded C code
generation.

After you generate the software interface model, you can generate C code from it using
Embedded Coder®.

Skip this task: Select this option if you want to provide your own embedded C code, or
do not have an Embedded Coder license.

Add IP core device driver to Linux kernel: Select to insert the IP core node into the
Linux device tree on the SD card on your board, reboot Linux, and add the IP core driver
as a Linux loadable kernel module. To use this option, your board must be connected.
Back up your SD card before you run this task. This option is available only for Zynq®

targets.

Build FPGA Bitstream

Generate bitstream for embedded system.

Run build process externally: Enable this option to run the build process in parallel
with MATLAB. If this option is disabled, you cannot use MATLAB until the build is
finished.

24 HDL Workflow Advisor Tasks

24-28

Program Target Device

Program the connected target device.

Click Run to program your connected target device.

Hardware-Software Codesign

25

Hardware-Software Codesign Basics

• “Hardware-Software Codesign Workflow” on page 25-2
• “Custom IP Core Generation” on page 25-5
• “Custom IP Core Report” on page 25-8
• “Generate a Board-Independent IP Core from Simulink” on page 25-13
• “Processor and FPGA Synchronization” on page 25-17

25 Hardware-Software Codesign Basics

25-2

Hardware-Software Codesign Workflow

The hardware-software codesign workflow is similar in concept for all target platforms.

 Hardware-Software Codesign Workflow

25-3

25 Hardware-Software Codesign Basics

25-4

1 Create a design based on your research and requirements.
2 Within your design, create software and hardware partitions to deploy as hardware

and software on your target platform.
3 For the hardware partition, generate HDL code; for the software partition, write or

generate C code.
4 Build, download, and integrate the HDL and C code on your target platform.

 Custom IP Core Generation

25-5

Custom IP Core Generation

Using the HDL Workflow Advisor, you can generate a custom IP core from a model or
algorithm. The generated IP core is sharable and reusable. You can integrate it with
a larger design by adding it in an embedded system integration environment, such as
Altera Qsys, Xilinx EDK, or Xilinx IP Integrator.

To learn how to generate a custom IP core from Simulink, see “Generate a Board-
Independent IP Core from Simulink”.

To learn how to generate a custom IP core from a MATLAB design, see “Generate a
Board-Independent IP Core from MATLAB”.

In this section...

“Custom IP Core Architectures” on page 25-5
“Target Platform Interfaces” on page 25-6
“Processor/FPGA Synchronization” on page 25-6
“Custom IP Core Generated Files” on page 25-7

Custom IP Core Architectures

You can generate an IP core with an AXI4 or AXI4-Lite interface. You can also generate
an IP core with an AXI4 or AXI4-Lite interface and AXI4-Stream Video interfaces.

An IP core with an AXI4 or AXI4-Lite interface:

An IP core with an AXI4 or AXI4-Lite interface and AXI4-Stream Video interfaces:

25 Hardware-Software Codesign Basics

25-6

The Algorithm from MATLAB/Simulink block represents your DUT. HDL Coder
generates the rest of the IP core based on your target platform interface settings and
processor/FPGA synchronization mode.

Target Platform Interfaces

You can map each port in your DUT to one of the following target platform interfaces in
the IP core:

• AXI4-Lite: Use this slave interface to access control registers or for lightweight data
transfer. HDL Coder generates memory-mapped registers and allocates address
offsets for the ports you map to this interface.

• AXI4: Use this slave interface to connect to components that support burst data
transmission. HDL Coder generates memory-mapped registers and allocates address
offsets for the ports you map to this interface.

• AXI4-Stream Video: Use this interface to send or receive a 32-bit scalar video data
stream.

• External ports: Use external ports to connect to FPGA external IO pins, or to other IP
cores with external ports.

To learn more about the AXI4, AXI4-Lite and AXI4-Stream Video protocols, refer to your
target hardware documentation.

Processor/FPGA Synchronization

HDL Coder generates synchronization logic in the IP core based on the processor/FPGA
synchronization mode you choose.

When generating a custom IP core, the following processor/FPGA synchronization
options are available:

• Free running (default)
• Coprocessing – blocking

To learn more about the processor/FPGA synchronization modes, see “Processor and
FPGA Synchronization”.

 Custom IP Core Generation

25-7

Custom IP Core Generated Files

After you generate a custom IP core, the IP core files are in the ipcore folder within
your project folder. In the HDL Workflow Advisor, you can view the IP core folder name
in the IP core folder field of the HDL Code Generation > Generate RTL Code and
IP Core task.

The IP core folder contains the following generated files:

• IP core definition files.
• HDL source files (.vhd or .v).
• A C header file with the register address map.
• (Optional) An HTML report with instructions for using the core and integrating the

IP core in your embedded system project.

25 Hardware-Software Codesign Basics

25-8

Custom IP Core Report
You generate an HTML custom IP core report by default when you generate a custom IP
core. The report describes the behavior and contents of the generated custom IP core.

In this section...

“Summary” on page 25-8
“Target Interface Configuration” on page 25-8
“Register Address Mapping” on page 25-9
“IP Core User Guide” on page 25-10
“IP Core File List” on page 25-11

Summary

The Summary section shows your coder settings when you generated the custom IP core.

The following figure is an example of a Summary section.

Target Interface Configuration

The Target Interface Configuration section shows how your DUT ports map to the target
hardware interface and the processor/FPGA synchronization mode.

The following figure is an example of a Target Interface Configuration section.

 Custom IP Core Report

25-9

To learn more about processor/FPGA synchronization modes, see “Processor and FPGA
Synchronization”.

To learn more about target platform interfaces, see “Custom IP Core Generation”.

Register Address Mapping

The Register Address Mapping section shows the address offsets for AXI4-Lite bus
accessible registers in your custom IP core, and the name of the C header file that
contains the same address offsets.

The following figure is an example of a Register Address Mapping section.

25 Hardware-Software Codesign Basics

25-10

IP Core User Guide

The IP Core User Guide section gives a high-level overview of the system architecture,
describes the processor and FPGA synchronization mode, and gives instructions for
integrating the IP core in your embedded system integration environment.

The following figure is an example of an IP Core User Guide system architecture
description.

The following figure is an example of a processor/FPGA synchronization description.

 Custom IP Core Report

25-11

The following figure is an example of instructions for integrating the IP core into your
embedded system integration environment.

IP Core File List

The IP Core File List section lists the files and file folders that comprise your custom IP
core.

The following figure is an example of an IP core file list.

25 Hardware-Software Codesign Basics

25-12

 Generate a Board-Independent IP Core from Simulink

25-13

Generate a Board-Independent IP Core from Simulink

In this section...

“Generate a Board-Independent IP Core” on page 25-13
“Requirements and Limitations for IP Core Generation” on page 25-16

Generate a Board-Independent IP Core

To generate a board-independent custom IP core to use in an embedded system
integration environment, such as Altera Qsys, Xilinx EDK, or Xilinx IP Integrator:

1 Select your DUT in your Simulink model and open the HDL Workflow Advisor.
2 In the Set Target > Set Target Device and Synthesis Tool task, for Target

workflow, select IP Core Generation.
3 For Target platform, select Generic Altera Platform or Generic Xilinx

Platform and click Run This Task.

25 Hardware-Software Codesign Basics

25-14

4 In the Set Target > Set Target Interface task, select a Target Platform
Interface for each port, then click Apply.

You can map each DUT port to one of the following interfaces:

• AXI4-Lite: Use this slave interface to access control registers or for lightweight
data transfer. HDL Coder generates memory-mapped registers and allocates
address offsets for the ports you map to this interface.

• AXI4: Use this slave interface to connect to components that support burst data
transmission. HDL Coder generates memory-mapped registers and allocates
address offsets for the ports you map to this interface.

• AXI4-Stream Video: Use this interface to send or receive a 32-bit scalar video
data stream.

• External Port: Use the external ports to connect to FPGA external IO pins, or
to other IP cores with external ports.

 Generate a Board-Independent IP Core from Simulink

25-15

5 If you want to set options in the other HDL Workflow Advisor tasks, set them.
6 In the HDL Code Generation > Generate RTL Code and IP Core task, set the

following fields:

• IP repository: If you have an IP repository folder, enter its path manually or
by using the Browse button. The coder copies the generated IP core into the IP
repository folder.

• Additional source files: If you are using a black box interface in your design to
include existing Verilog or VHDL code, enter the file names. Enter each file name
manually, separated with a semicolon (;), or by using the Add button. The source
file language must match your target language.

• Generate IP core report: Enable this option to generate HTML documentation
for the IP core.

7 Right-click the HDL Code Generation > Generate RTL Code and IP Core task
and select Run to Selected Task.

HDL Coder generates the IP core files in the output folder shown the IP core folder
field, including the HTML documentation.

To view the IP core report, click the link in the message window.

To learn more about custom IP core generation, see “Custom IP Core Generation”.

25 Hardware-Software Codesign Basics

25-16

Requirements and Limitations for IP Core Generation

To generate a custom IP core:

• The DUT must be an atomic system.
• There cannot be both an AXI4 interface and AXI4-Lite interface in the same IP core.
• The DUT cannot contain Xilinx System Generator blocks or Altera DSP Builder

Advanced blocks.
• If your target language is VHDL, and your synthesis tool is Xilinx ISE or Altera

Quartus II, the DUT cannot contain a model reference.

To map your DUT ports to an AXI4-Lite interface, the input and output ports must:

• Have a bit width less than or equal to 32 bits.
• Be scalar.

When mapping your DUT ports to an AXI4-Stream Video interface, the following
requirements and limitations apply:

• Ports must have a 32-bit width.
• Ports must be scalar.
• The model must be single rate.
• You can have a maximum of one input video port and one output video port.

The AXI4-Stream Video interface is not supported in Coprocessing – blocking
processor/FPGA synchronization mode.

 Processor and FPGA Synchronization

25-17

Processor and FPGA Synchronization

In the HDL Workflow Advisor, you can choose a Processor/FPGA synchronization
mode for your processor and FPGA when you:

• Generate a custom IP core to use in an embedded system integration project.
• Use the Simulink Real-Time FPGA I/O workflow.

The following synchronization modes are available:

• Free running (default)
• Coprocessing – blocking

• Coprocessing – nonblocking with delay (available only for the Simulink
Real-Time FPGA I/O workflow)

Free Running Mode

In free running mode, the processor and FPGA each run nonsynchronized, continuously,
and in parallel.

Select Free running as the Processor/FPGA synchronization mode when you do
not want your processor and FPGA to be automatically synchronized.

The following diagram shows how the processor and FPGA can communicate in free
running mode. The shaded areas indicate that the processor and FPGA are running
continuously.

25 Hardware-Software Codesign Basics

25-18

Coprocessing – Blocking Mode

In blocking coprocessor mode, HDL Coder automatically generates synchronization logic
for the FPGA so that the processor and FPGA run in tandem.

Select Coprocessing – blocking as the Processor/FPGA synchronization mode
when FPGA execution time is short relative to the processor sample time, and you want
the FPGA to complete before the processor continues.

The following diagram shows how the processor and FPGA run in blocking coprocessing
mode.

The shaded areas indicate when the processor and FPGA are running. During each
sample time, the processor writes to the FPGA, then stops and waits for an indication
that the FPGA has finished processing before continuing to run. Each time the FPGA
runs, it executes the logic generated for one DUT subsystem sample time.

Coprocessing – Nonblocking With Delay Mode

In delayed nonblocking coprocessor mode, HDL Coder automatically generates
synchronization logic for the FPGA so that the processor and FPGA run in tandem. This
mode is available only for the Simulink Real-Time FPGA I/O workflow.

Select Coprocessing – nonblocking with delay as the Processor/FPGA
synchronization mode when the FPGA processing time is long relative to the processor
sample time, or you do not want the processor to wait for the FPGA to finish before the
processor continues to run.

 Processor and FPGA Synchronization

25-19

The following diagram shows how the processor and FPGA run in delayed nonblocking
coprocessor mode.

The shaded areas indicate when the processor and FPGA are running. During each
sample time, the processor reads FPGA data from the previous sample time, then writes
to the FPGA and continues to run without waiting for the FPGA to finish. Each time the
FPGA runs, it executes the logic generated for one DUT subsystem sample time.

25-20

26

Target SoC Platforms and Speedgoat
Boards

• “Hardware-Software Codesign Workflow for SoC Platforms” on page 26-2
• “Generate Simulink Real-Time Interface for Speedgoat Boards” on page 26-11

26 Target SoC Platforms and Speedgoat Boards

26-2

Hardware-Software Codesign Workflow for SoC Platforms

The HDL Coder hardware-software codesign workflow helps automate the deployment
of your MATLAB and Simulink design to a Zynq-7000 platform or Altera SoC platform.
You can explore the best ways to partition and deploy your design by iterating through
the following workflow.

 Hardware-Software Codesign Workflow for SoC Platforms

26-3

26 Target SoC Platforms and Speedgoat Boards

26-4

1 MATLAB and Simulink Algorithm and System Design: You begin by implementing
your design in MATLAB or Simulink. When the design behavior meets your
requirements, decide how to partition your design: which parts you want to run in
hardware, and which parts you want to run in embedded software.

The part of the design that you want to run in hardware must use MATLAB syntax
or Simulink blocks that are supported and configured for HDL code generation. See:

• “MATLAB Algorithm Design”
• “Model and Architecture Design”

2 HDL IP Core Generation: Enclose the hardware part of your design in an atomic
Subsystem block or MATLAB function, and use the HDL Workflow Advisor to define
and generate an HDL IP core.

The following diagram shows a design that has been partitioned into a hardware
part, in orange, and software part, in blue. HDL IP core generation creates an IP
core from the hardware part of the model. The IP core includes hardware interface
components such as AXI4 or AXI4-Lite interface-accessible registers, AXI4 or AXI4-
Lite interfaces, AXI4-Stream Video interfaces, and external ports.

 Hardware-Software Codesign Workflow for SoC Platforms

26-5

26 Target SoC Platforms and Speedgoat Boards

26-6

3 Embedded System Tool Integration: As part of the HDL Workflow Advisor IP core
generation workflow, you insert your generated IP core into a reference design, and
generate an FPGA bitstream for the SoC hardware.

The reference design is a predefined embedded system integration project. It contains
all the elements the Altera or Xilinx software needs to deploy your design to the SoC
platform, except for the custom IP core and embedded software that you generate.

The following diagram shows the relationship between the reference design, in
green, and the generated IP core, in orange.

 Hardware-Software Codesign Workflow for SoC Platforms

26-7

26 Target SoC Platforms and Speedgoat Boards

26-8

4 SW Interface Model Generation (requires a Simulink license and Embedded Coder
license): In the HDL Workflow Advisor, after you generate the IP core and insert it
into the reference design, you can optionally generate a software interface model.
The software interface model is your original model with AXI driver blocks replacing
the hardware part.

If you have an Embedded Coder license, you can automatically generate the software
interface model, generate embedded code from it, and build and run the executable
on the Linux kernel on the ARM® processor. The generated embedded software
includes AXI driver code, generated from the AXI driver blocks, that controls the
HDL IP core.

If you do not have an Embedded Coder license or Simulink license, you can write the
embedded software and manually build it for the ARM processor.

The following diagram shows the difference between the original model and the
software interface model.

 Hardware-Software Codesign Workflow for SoC Platforms

26-9

5 SoC Platform and External Mode PIL: Using the HDL Workflow Advisor, you
program your FPGA bitstream to the SoC platform. You can then run the software

26 Target SoC Platforms and Speedgoat Boards

26-10

interface model in external mode, or processor-in-the-loop (PIL) mode, to test your
deployed design.

If your deployed design does not meet your design requirements, you can repeat the
workflow with a modified model, or a different hardware-software partition.

Related Examples
• “Xilinx Zynq Platform”
• “Altera SoC Platform”

 Generate Simulink Real-Time Interface for Speedgoat Boards

26-11

Generate Simulink Real-Time Interface for Speedgoat Boards

In this section...

“Select a Speedgoat Target Device” on page 26-11
“Set the Target Interface for Speedgoat Boards” on page 26-14
“Code Generation, Synthesis, and Generation of Simulink Real-Time Interface
Subsystem” on page 26-17

This example shows how to generate a hardware-in-the-loop interface for Speedgoat
board programming with Simulink Real-Time using the Simulink Real-Time FPGA I/
O workflow.

To run this example, you must:

• Have a license for Simulink Real-Time software.
• Use Xilinx ISE 10.1.

Select a Speedgoat Target Device

Note: Before selecting a Speedgoat target device, see “Third-Party Synthesis Tools”.

To select a target Speedgoat board:

1 Open the model.
dxpcSGIO301servo_fpga

The ServoSystem subsystem is the device under test (DUT) for HDL code
generation.

26 Target SoC Platforms and Speedgoat Boards

26-12

2 Right-click the ServoSystem block, and select HDL Code > HDL Workflow
Advisor.

3 In the HDL Workflow Advisor, select Set Target > Set Target Device and
Synthesis Tool.

4 For Target workflow, select Simulink Real-Time FPGA I/O.

On the left, the Set Target Interface and Set Target Frequency steps appear
under Set Target along with the FPGA Synthesis and Analysis and Download
to Target tasks.

5 From the Target platform menu, select the Speedgoat IO301 board.

Simulink Real-Time and HDL Workflow Advisor support the same set of Speedgoat
devices. For a list of supported boards, see “FPGA Support”.

 Generate Simulink Real-Time Interface for Speedgoat Boards

26-13

6 Click Run This Task.

After the Set Target Device and Synthesis Tool task is complete, the HDL
Workflow Advisor enables the next task in the hierarchy, Set Target Interface.
After the Set Target Device and Synthesis Tool task runs, the HDL Workflow
Advisor looks like this figure.

26 Target SoC Platforms and Speedgoat Boards

26-14

Set the Target Interface for Speedgoat Boards

The Set Target Interface task in the HDL Workflow Advisor enables you to define
how the inputs and outputs of the DUT map to the inputs and outputs of your Speedgoat
target device.

 Generate Simulink Real-Time Interface for Speedgoat Boards

26-15

Using the Target Platform Interface and Bit Range / Address / FPGA Pin columns,
you can allocate each port on the DUT to an I/O resource on the target device. To allocate
ports:

1 In the left pane of the HDL Workflow Advisor, select the Set Target Interface task.
2 In the Target Platform Interface Table, for each port you want to allocate, click the

Target Platform Interfaces column and select an I/O resource from the dropdown
list. Click Apply.

This figure shows the Target Platform Interface Table for an example configuration.
All ports have been allocated to a PCI Interface address or a single bit on the TTL I/
O Connector.

26 Target SoC Platforms and Speedgoat Boards

26-16

Note: At least one output port must be allocated to the target device. If all ports are
left unallocated, the Set Target Interface task shows an error and terminates.
For information about the I/O resource options, refer to the documentation for your
target board.

3 Click Run This Task.
4 In the Set Target Frequency task, set your FPGA clock frequency and click Run

This Task.

 Generate Simulink Real-Time Interface for Speedgoat Boards

26-17

Code Generation, Synthesis, and Generation of Simulink Real-Time
Interface Subsystem

After selecting the target device and configuring its port interface, you can enable the
HDL Workflow Advisor to perform the next sequence of tasks automatically. These tasks
include:

• Prepare Model For HDL Code Generation: Checking the model for HDL code
generation compatibility.

• HDL Code Generation: Setting HDL-related options of the Model Configuration
Parameters dialog box and generating HDL code.

• FPGA Synthesis and Analysis: Executing synthesis and timing analysis in Xilinx
ISE; back annotating the model with critical path information obtained during
synthesis.

• Download to Target : Generating an FPGA programming file and a model that
contains a Simulink Real-Time interface subsystem.

Note: The Download to Target tasks do not actually download anything to a target
device. They create an interface subsystem that you can plug into a Simulink Real-
Time model.

To run this sequence of tasks automatically:

1 Open the Download to Target task group.
2 Right-click Generate Simulink Real-Time interface and select Run to Selected

Task.
3 As the Run to Selected Task sequence executes, the HDL Workflow Advisor

displays a progress indicator for each task.

After the task sequence is complete, you see the Result subpane.

26 Target SoC Platforms and Speedgoat Boards

26-18

4 The Result pane displays a link to a generated model —
gm_dxpcSGIO301servo_fpga_xpc. Click the link to open the model.

The model contains the Simulink Real-Time interface subsystem. This new
subsystem replaces the DUT (ServoSystem) in the original model. It replaces the
internals of the original DUT with a Simulink Real-Time FPGA block and other
blocks to work with the algorithm on the FPGA.

 Generate Simulink Real-Time Interface for Speedgoat Boards

26-19

5 Save the gm_dxpcSGIO301servo_fpga_xpc model.
6 To learn how to use the generated model with Simulink Real-Time, see “FPGA

Modeling” in the Simulink Real-Time documentation.

26-20

